

Lecture 18

Ford-Fulkerson Method (contd.), Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path $\textcolor{red}{P}$ in the residual network G_f and its **bottleneck capacity** δ .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to $(\textcolor{red}{u}, v)$ in f .
 - If $(v, u) \in E(G)$, subtract δ flow from $(v, \textcolor{red}{u})$ in f .

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

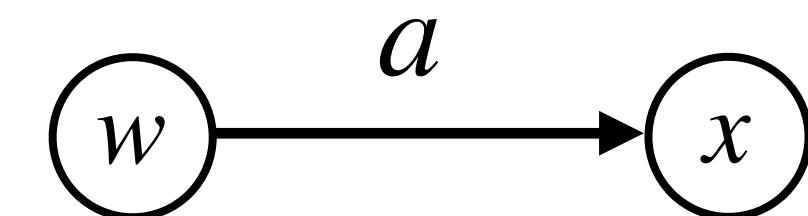
Satisfying Capacity Constraint:

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:



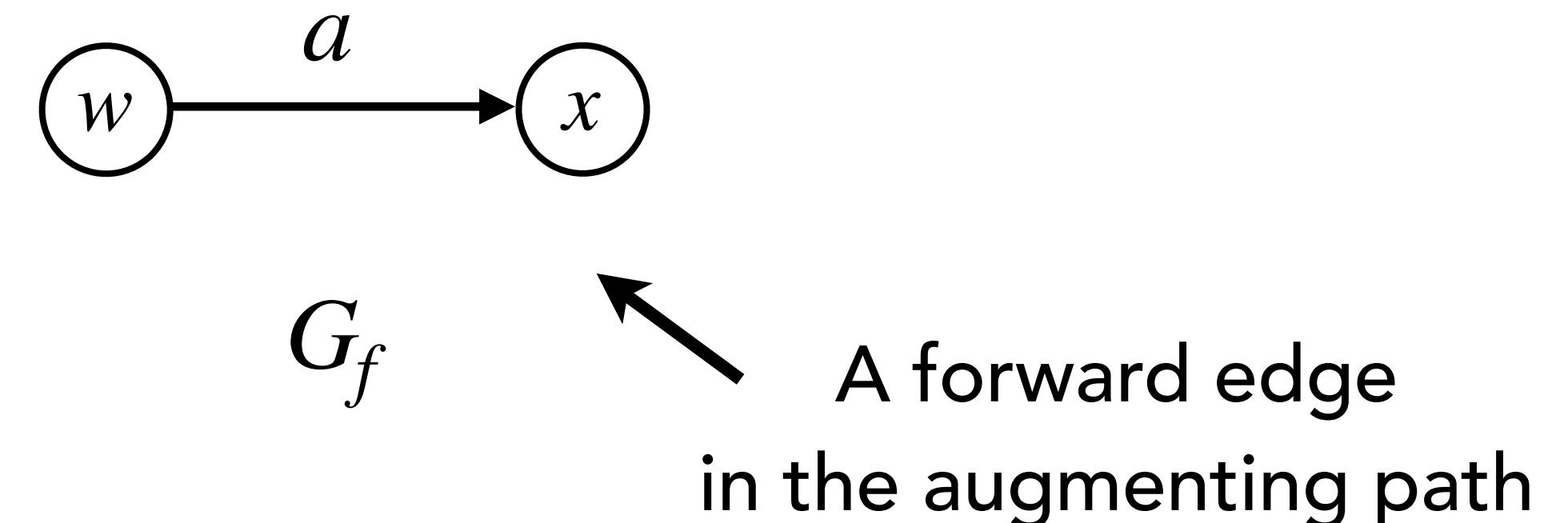
G_f

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

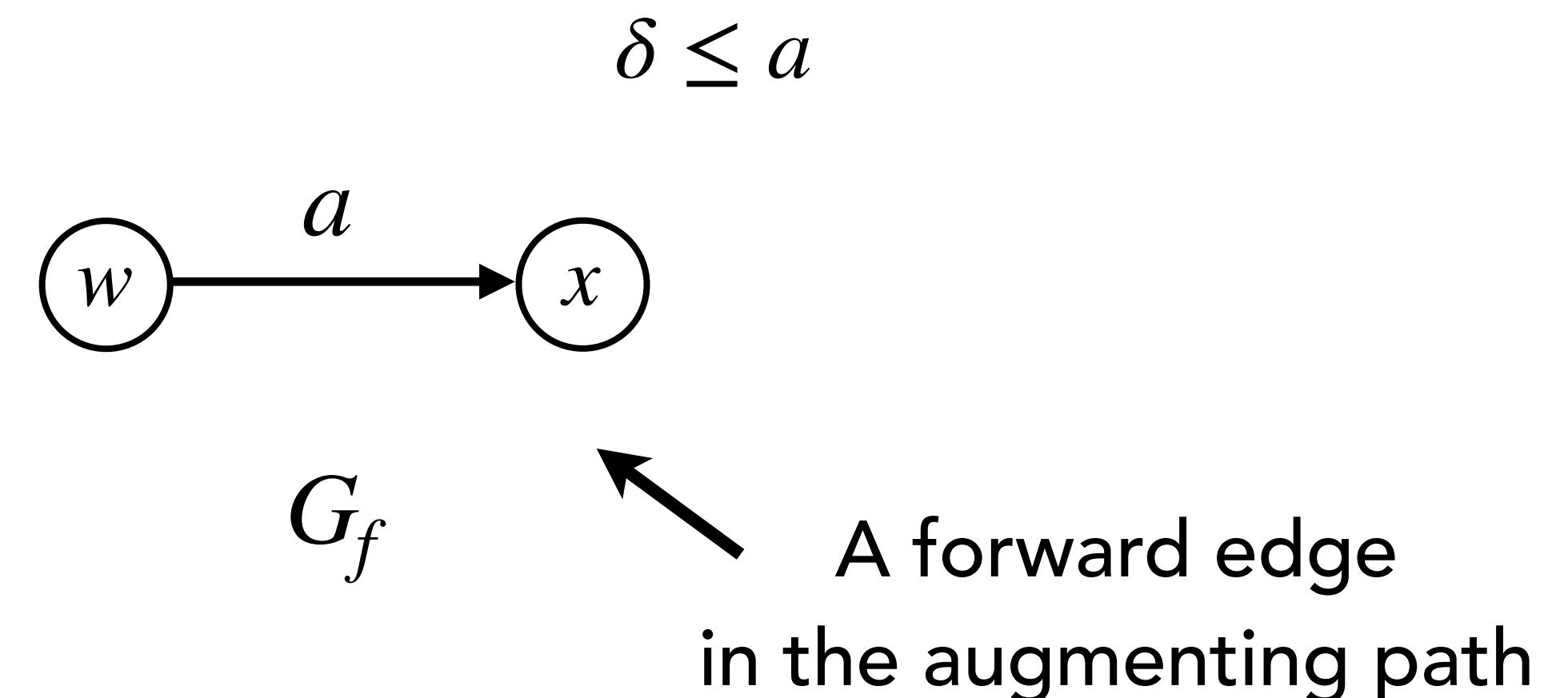


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

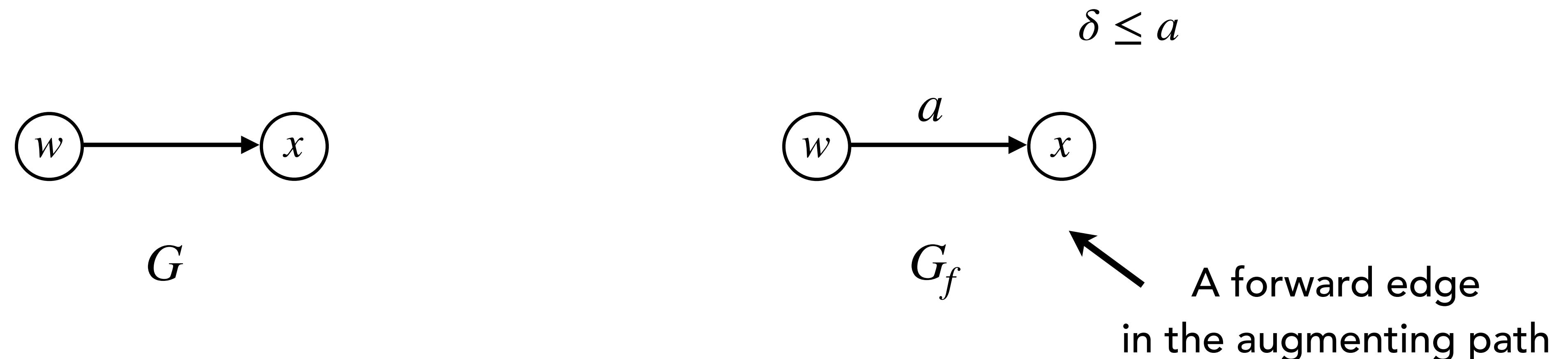


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

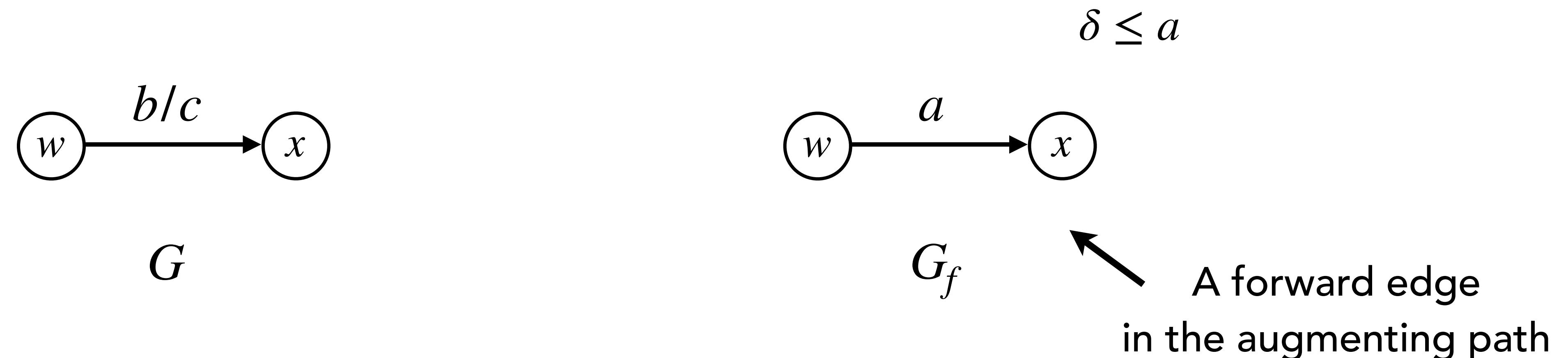


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

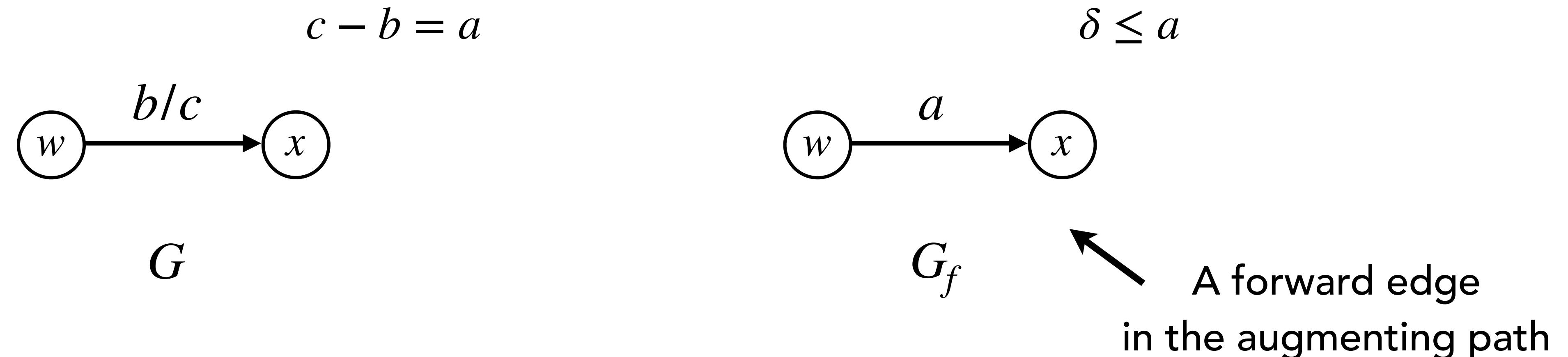


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

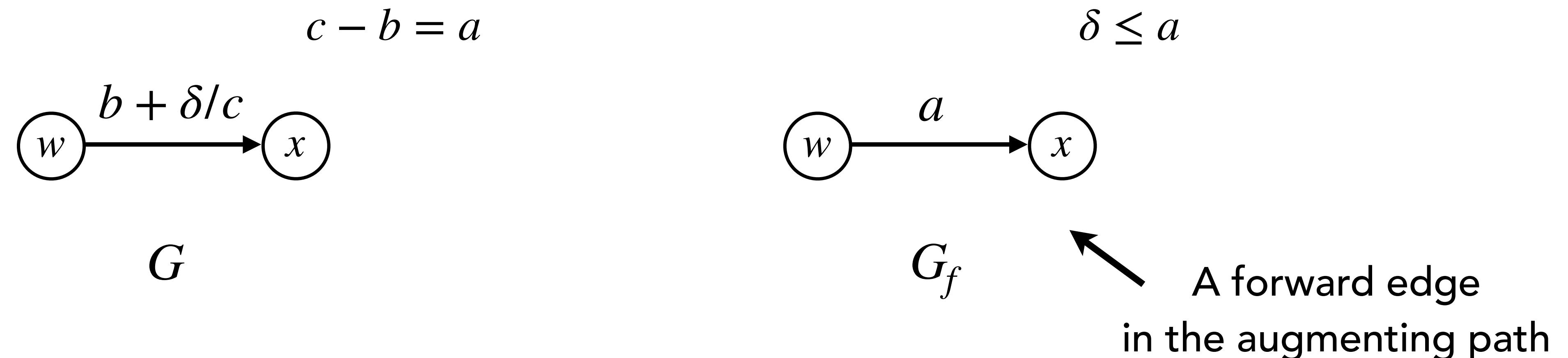


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:



Augmenting Flows via Residual Networks

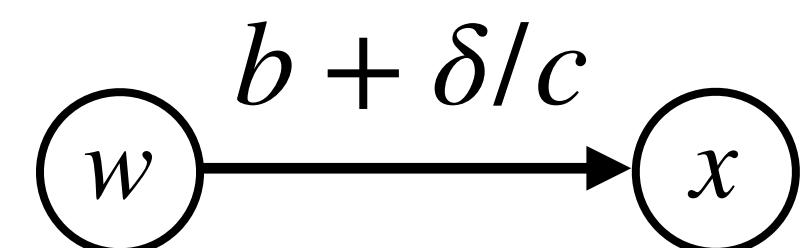
- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

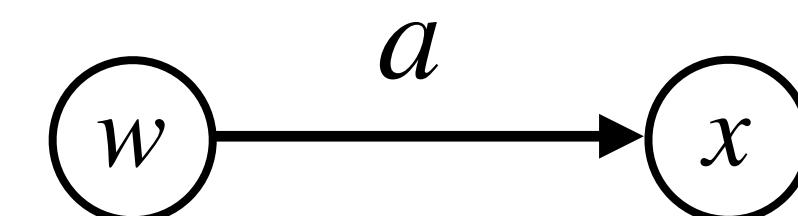
Satisfying Capacity Constraint:

$$c - b = a, b + \delta \leq c$$

$$\delta \leq a$$



G



G_f

A forward edge
in the augmenting path

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

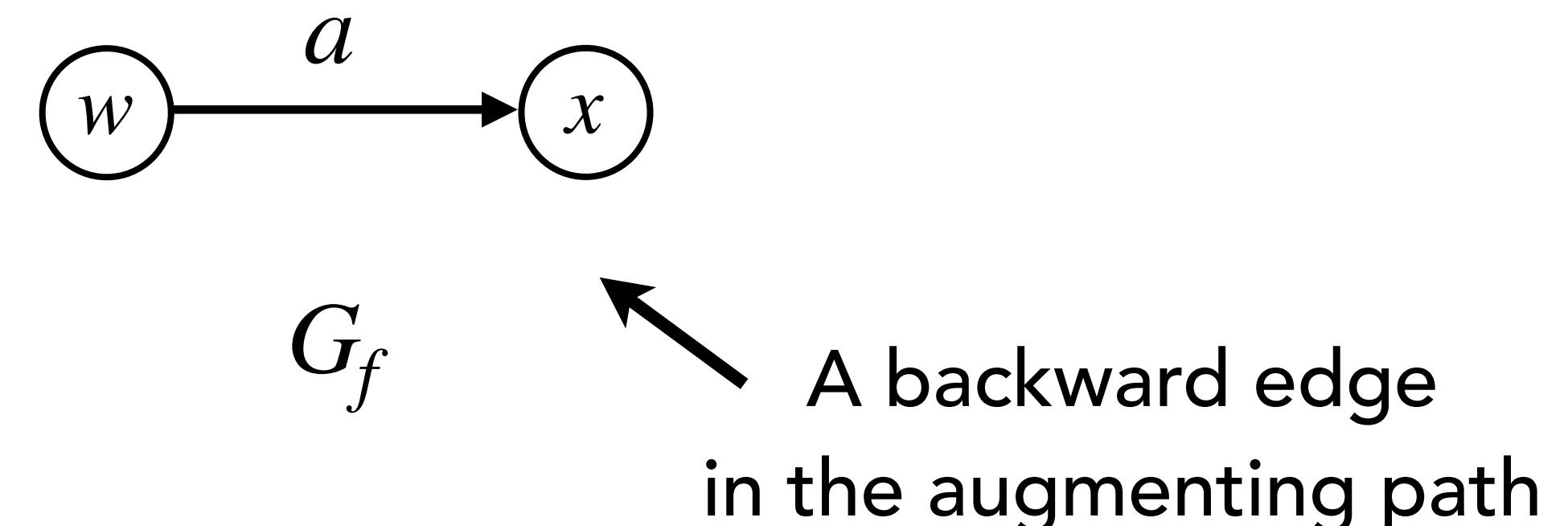
Satisfying Capacity Constraint:

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

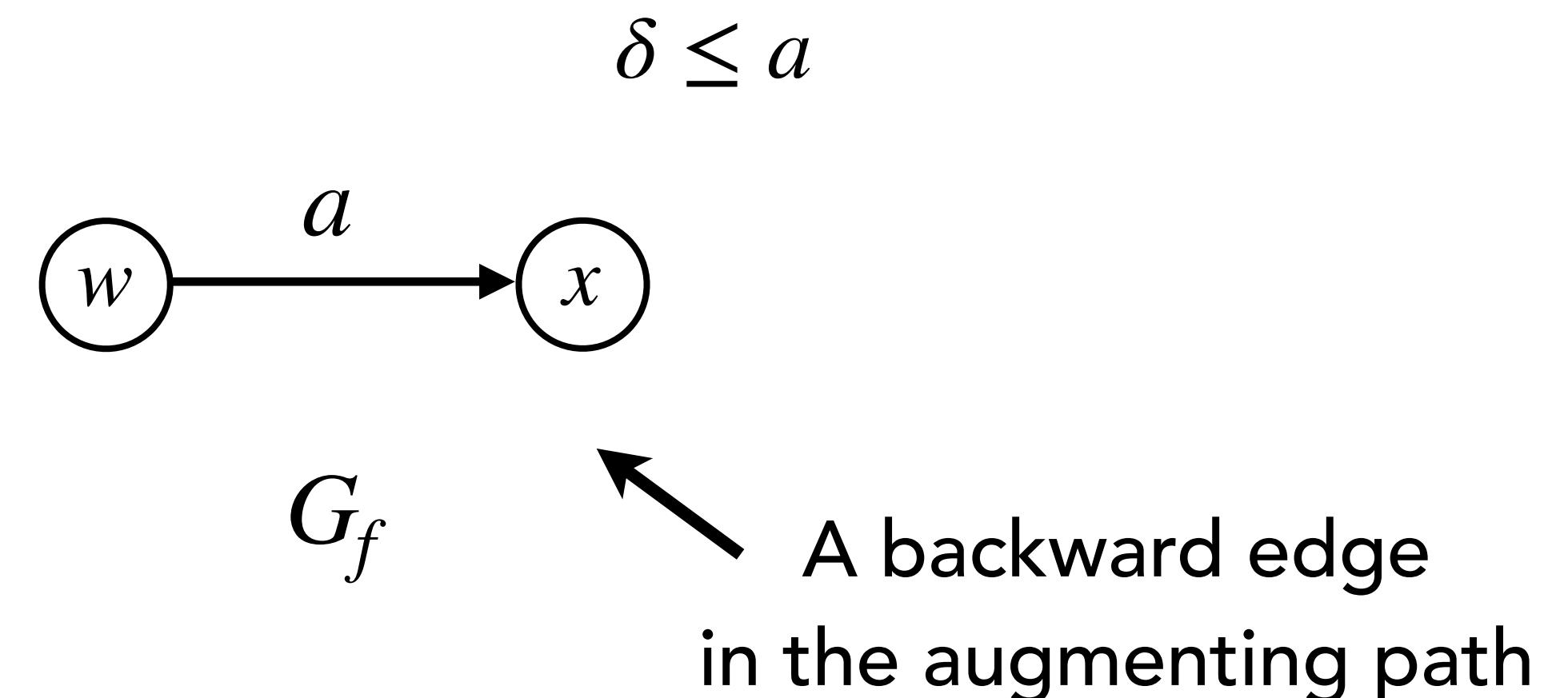


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

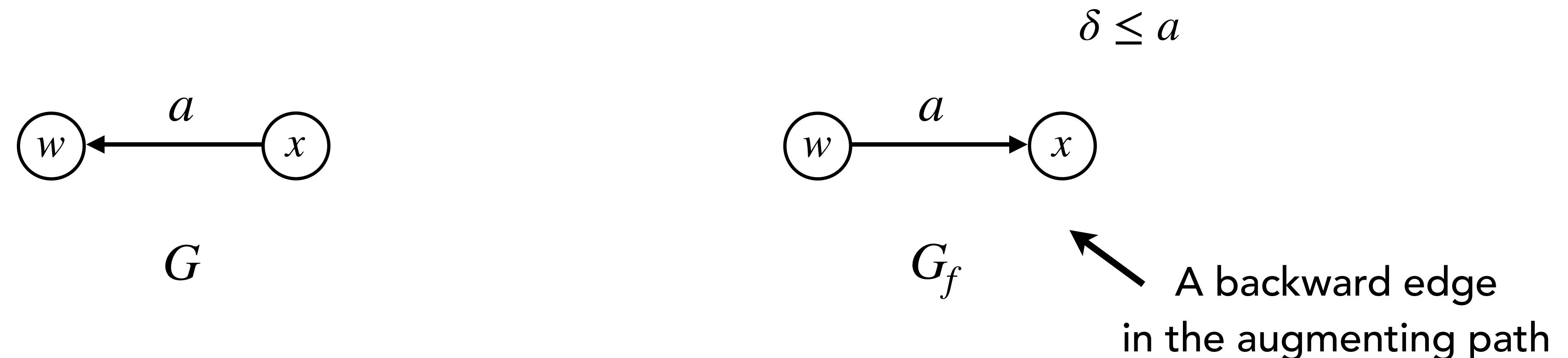


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:

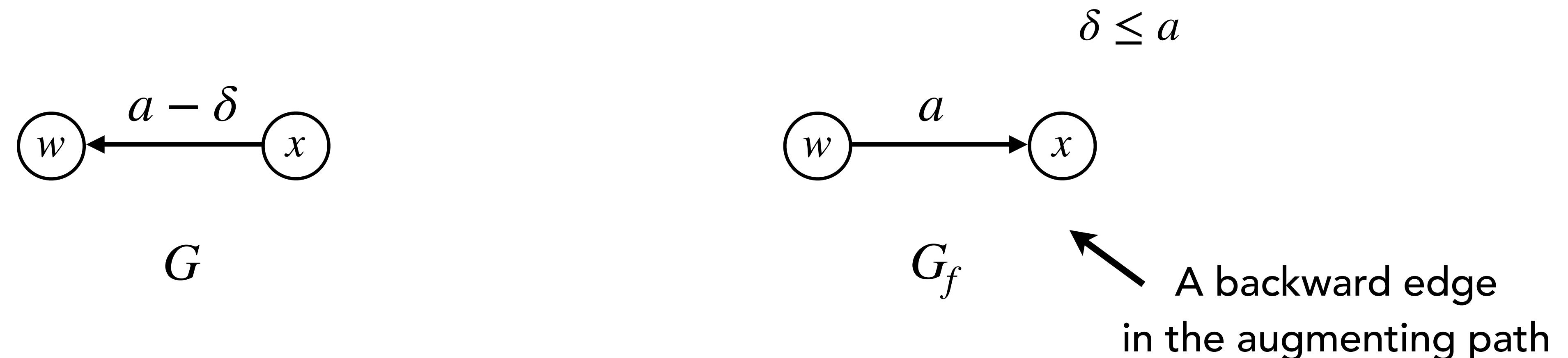


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Capacity Constraint:



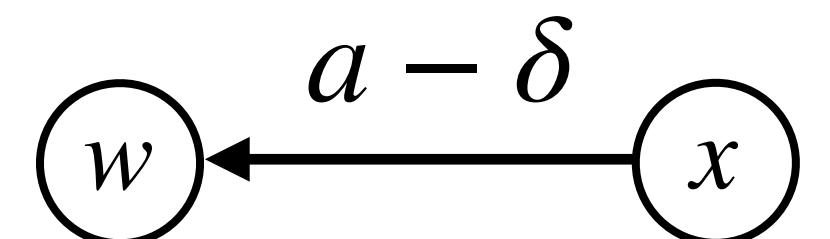
Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

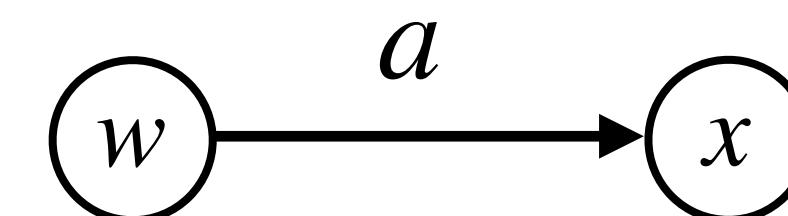
Satisfying Capacity Constraint:

$$a - \delta \geq 0$$



G

$$\delta \leq a$$



G_f

A backward edge
in the augmenting path

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

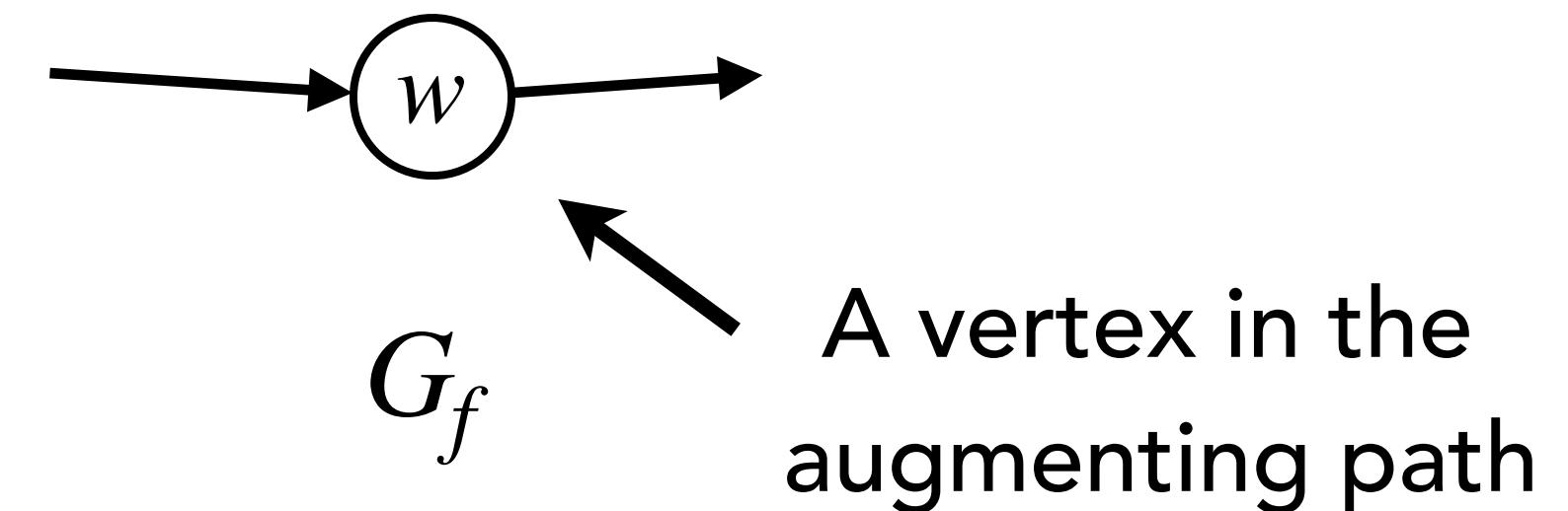
Satisfying Conservation Constraint:

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

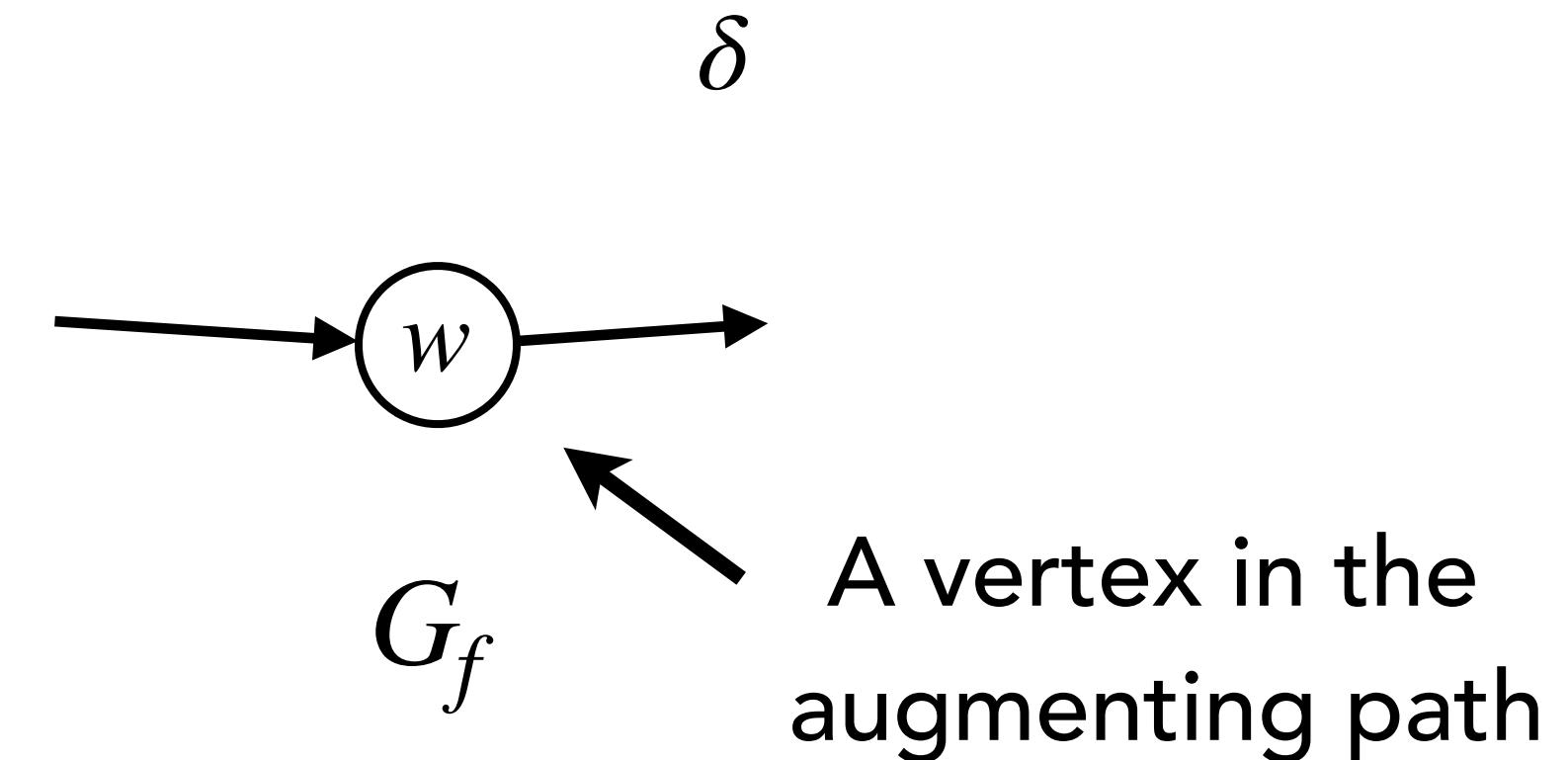


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

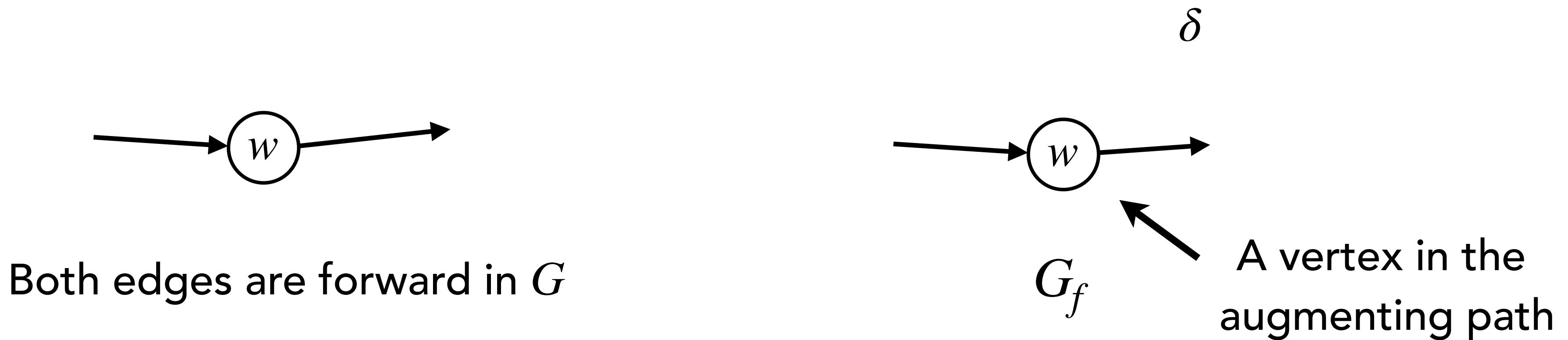


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

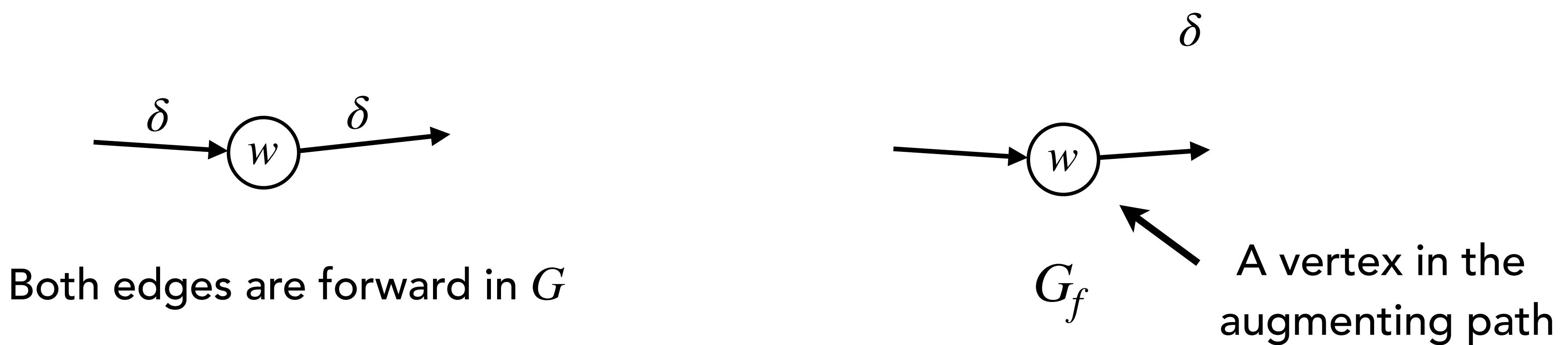


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

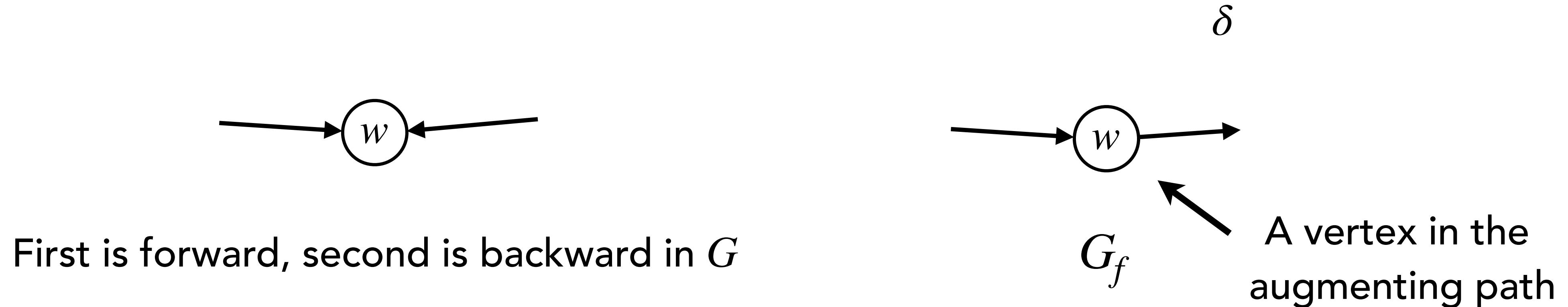


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

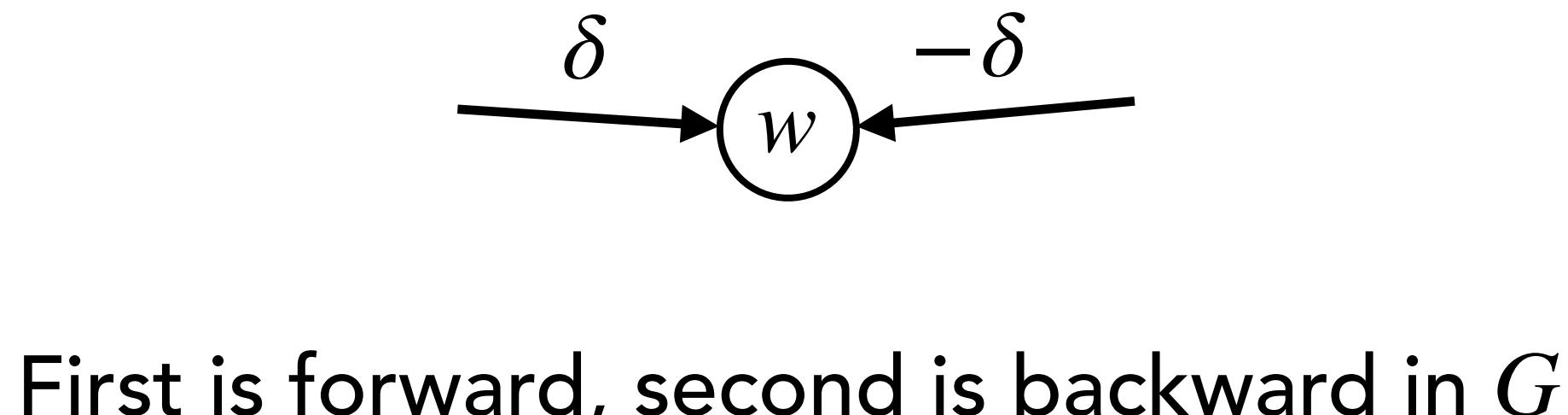
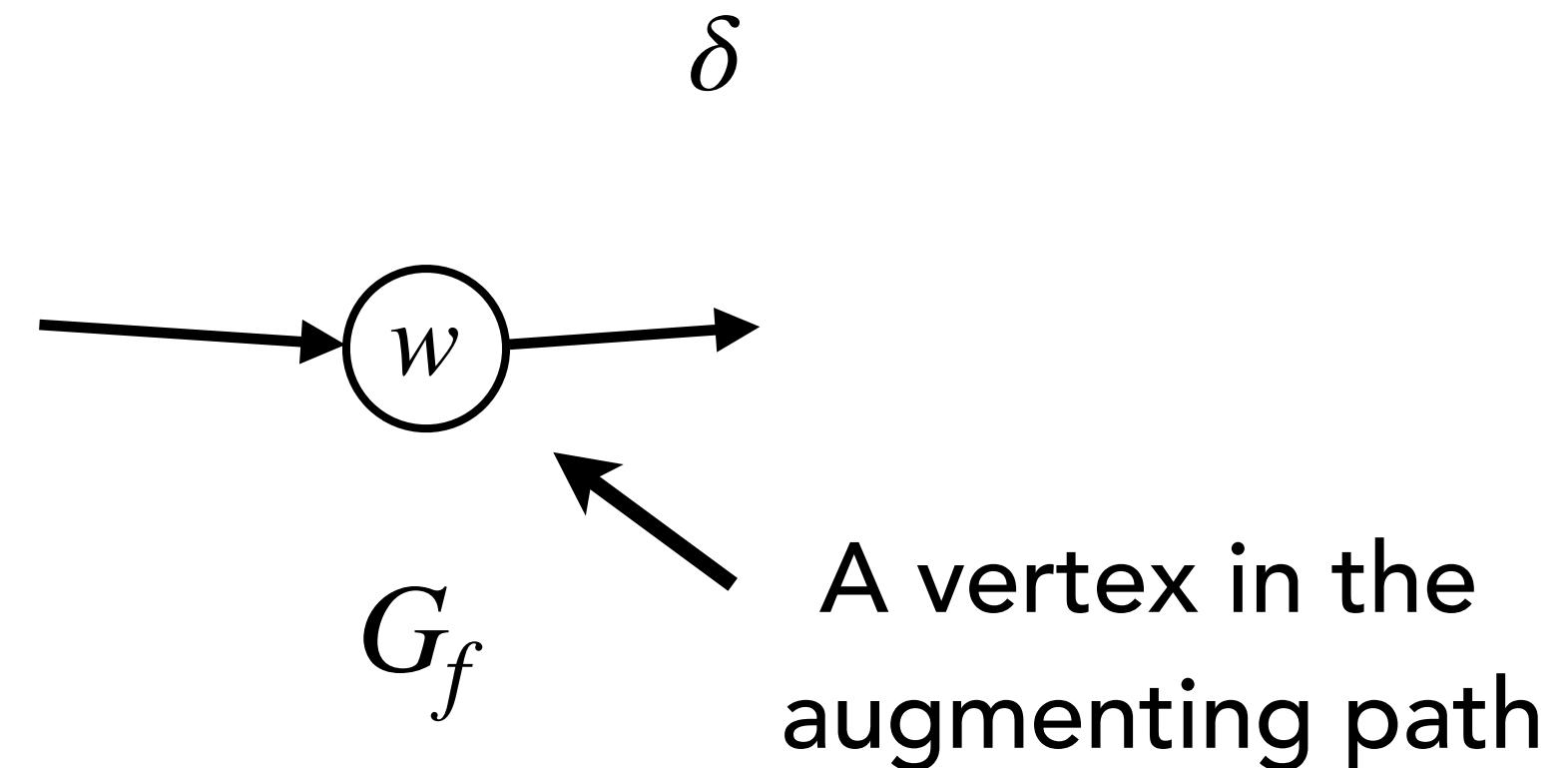


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

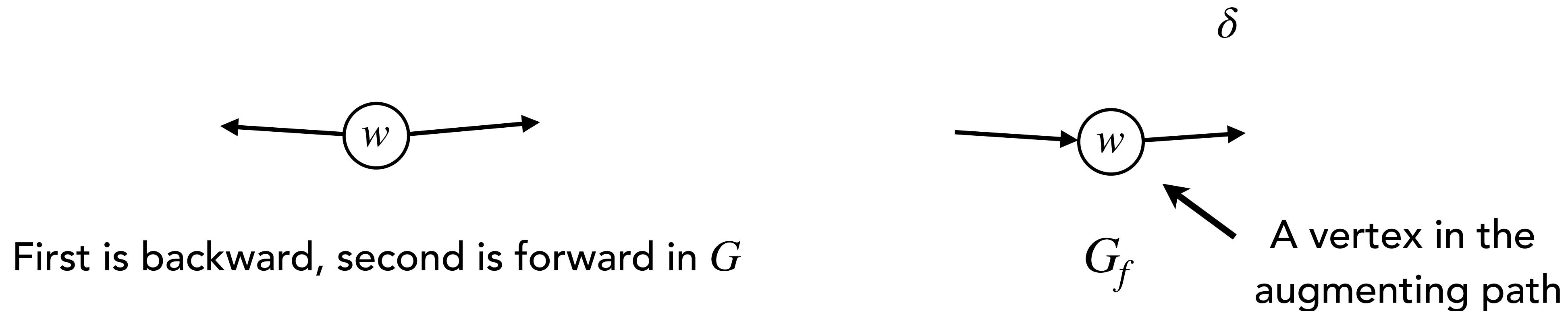


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:



Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

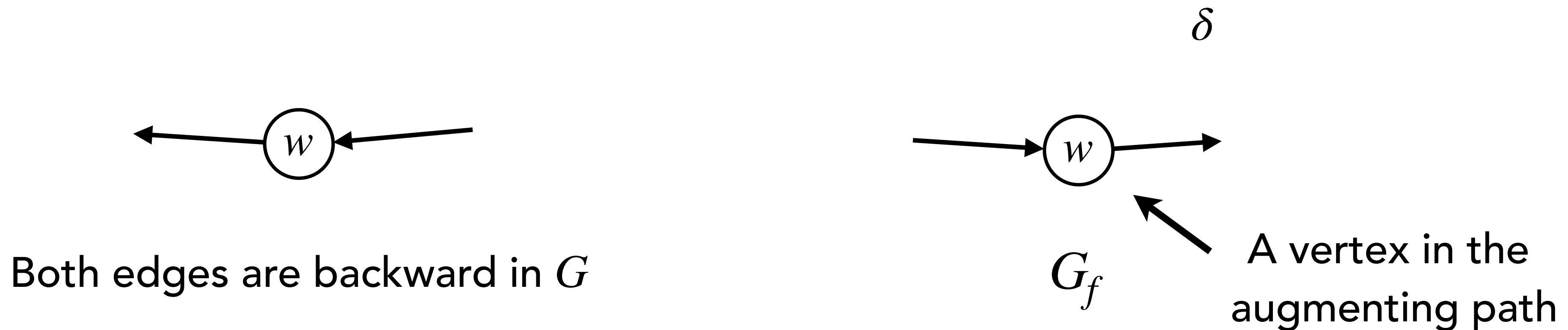


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:

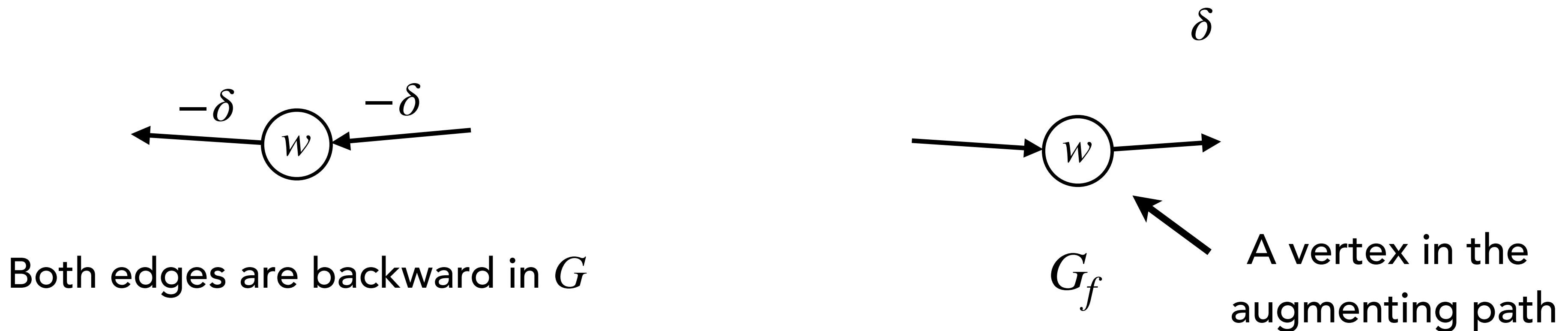


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Satisfying Conservation Constraint:



Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

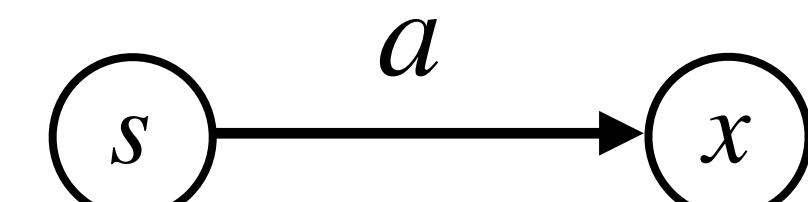
Why flow value increases?

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?



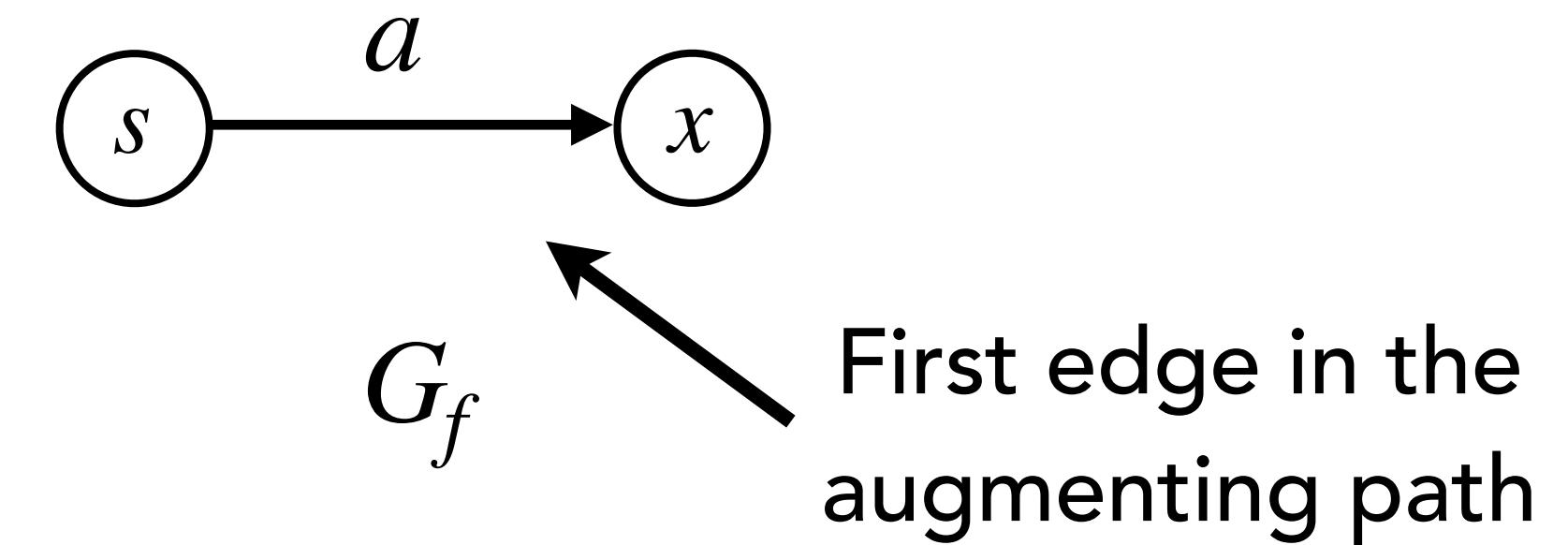
G_f

Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?

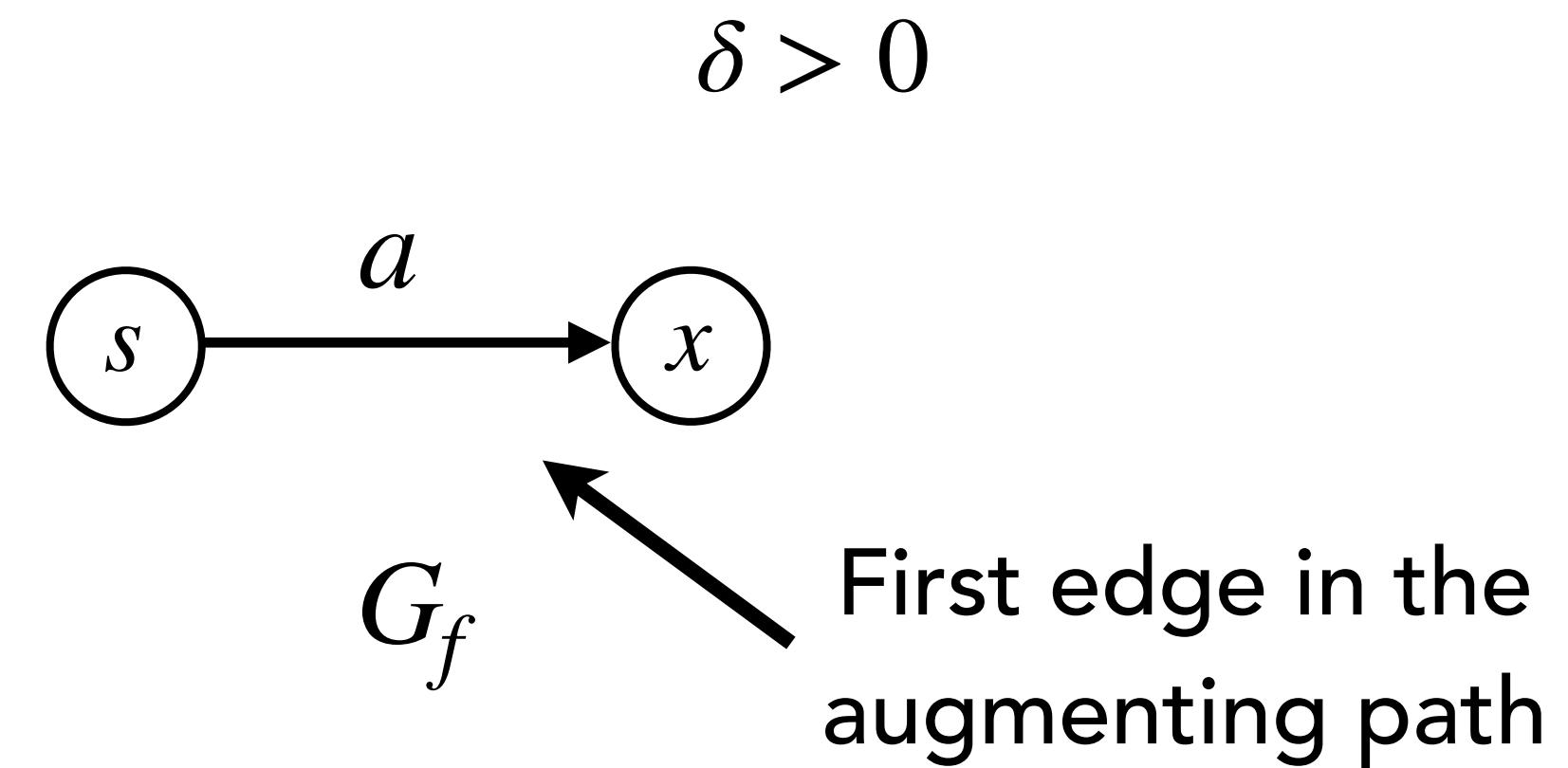


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?



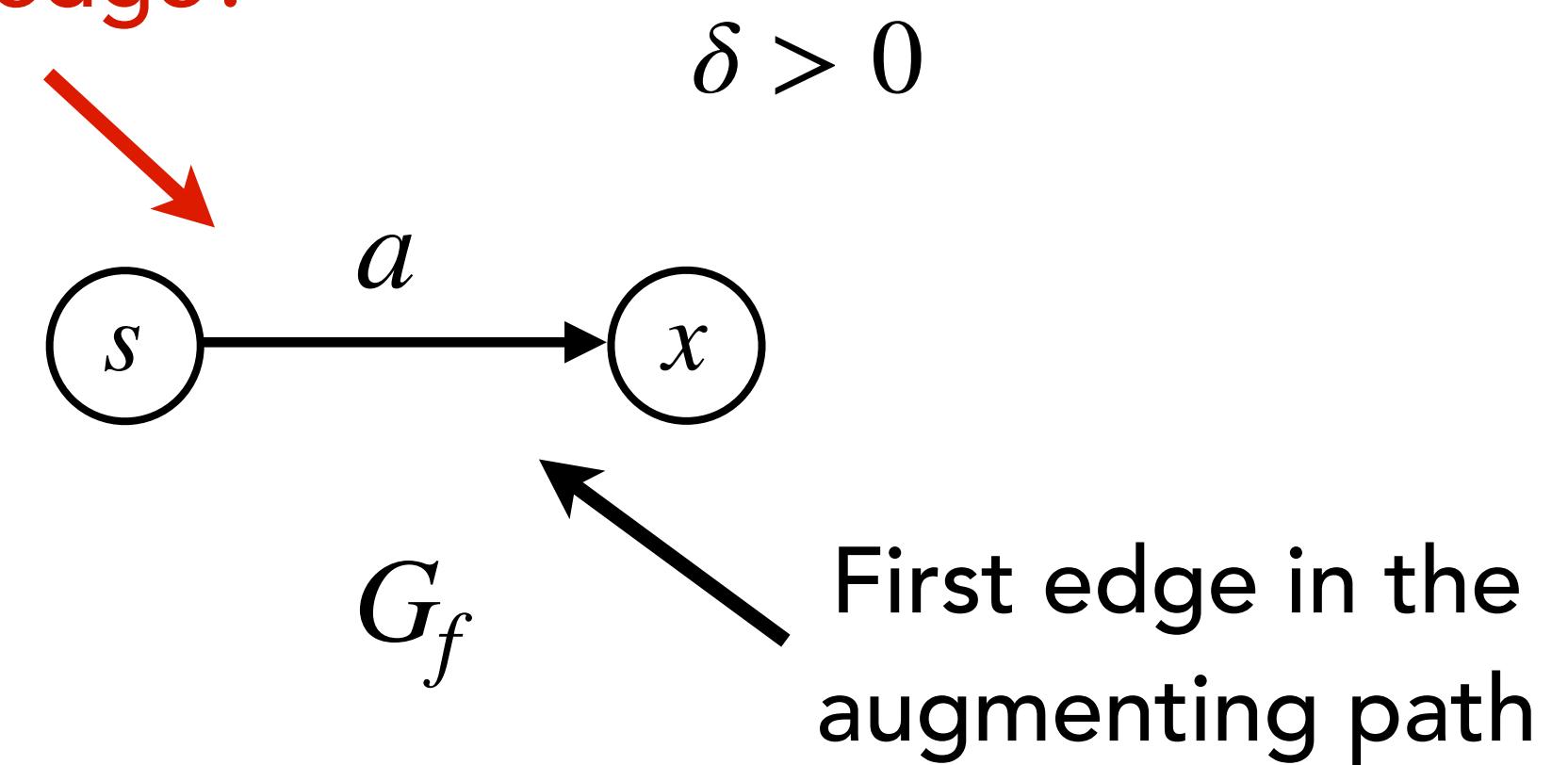
Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?

Can it be a backward edge?



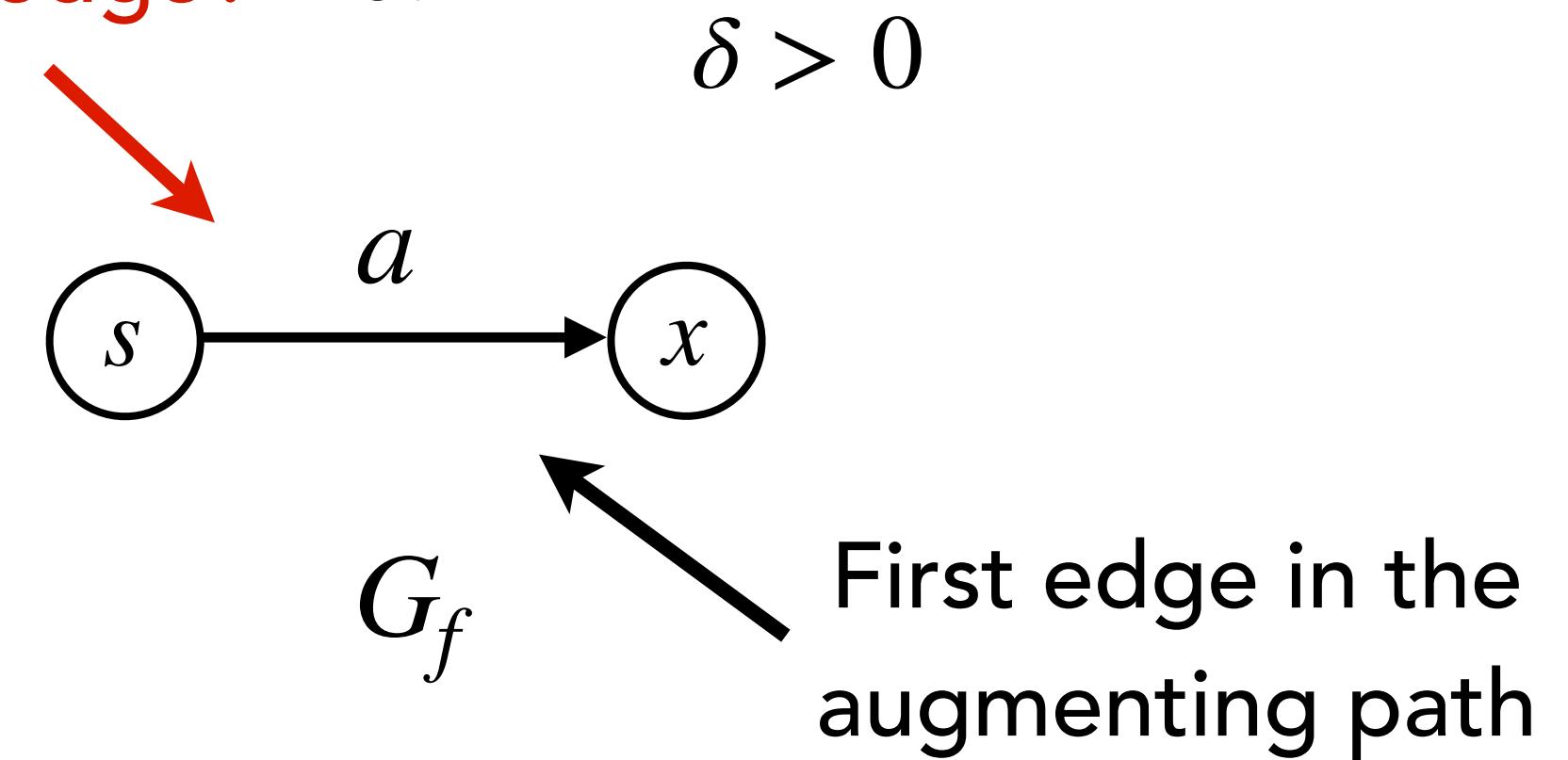
Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?

Can it be a backward edge? No.

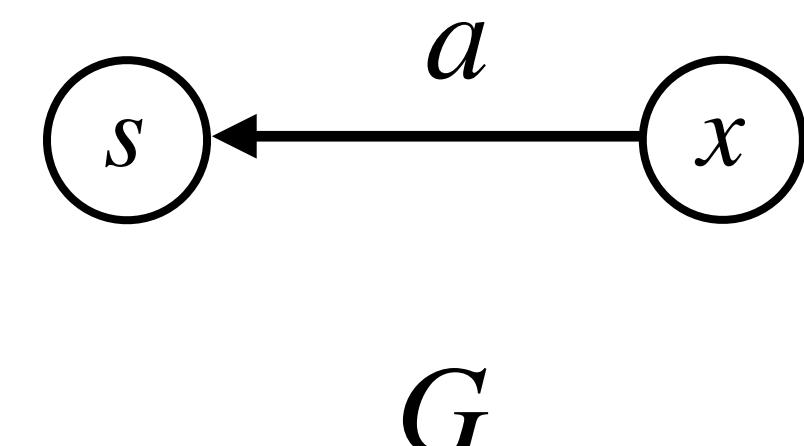


Augmenting Flows via Residual Networks

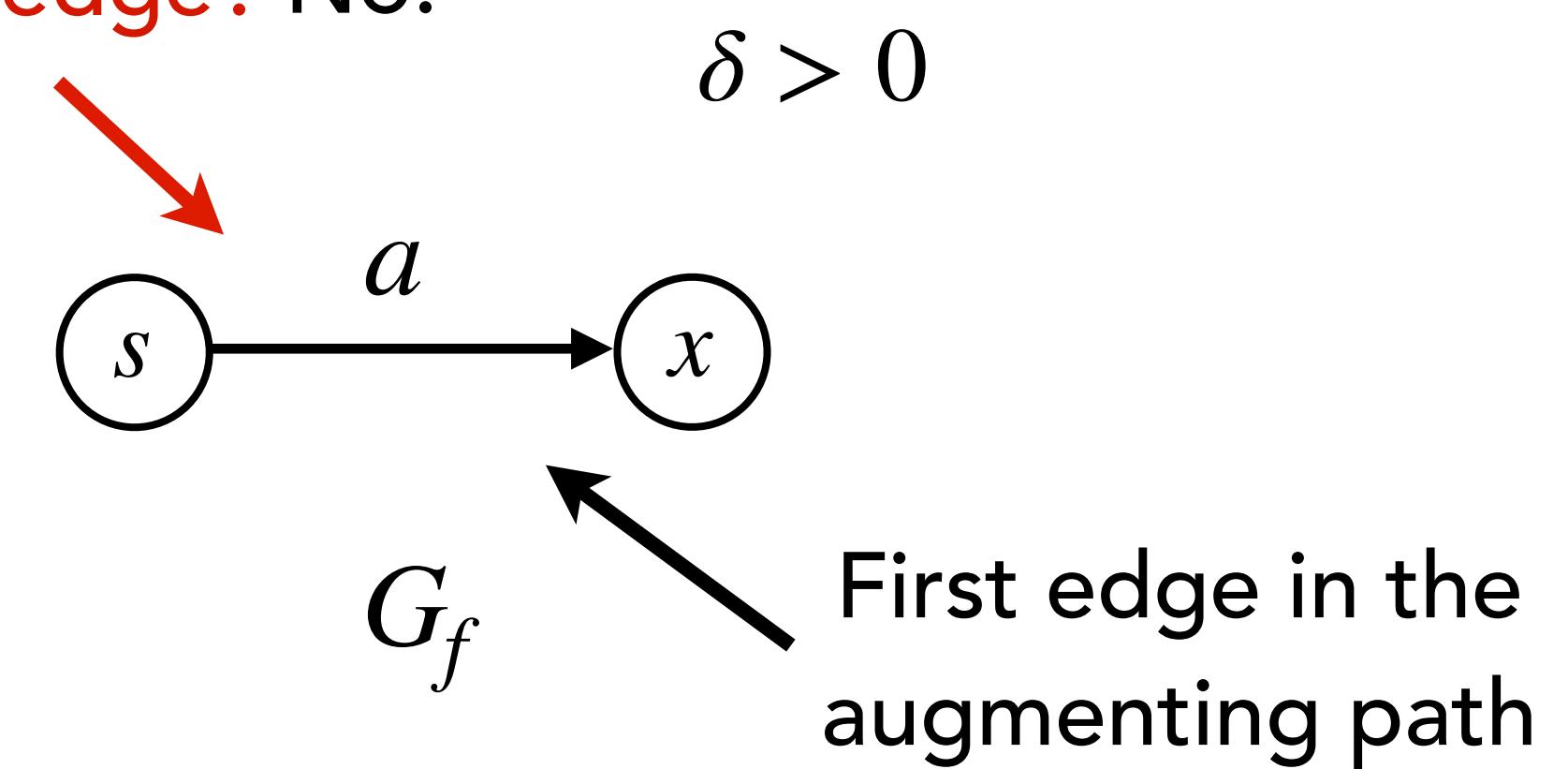
- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?



Can it be a backward edge? No.

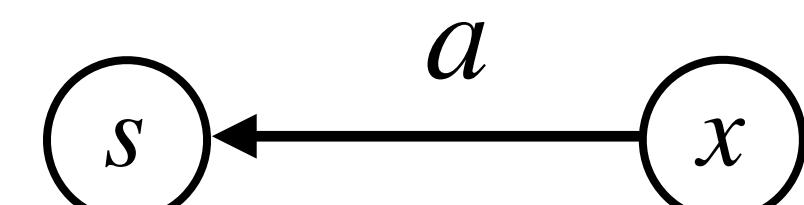


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

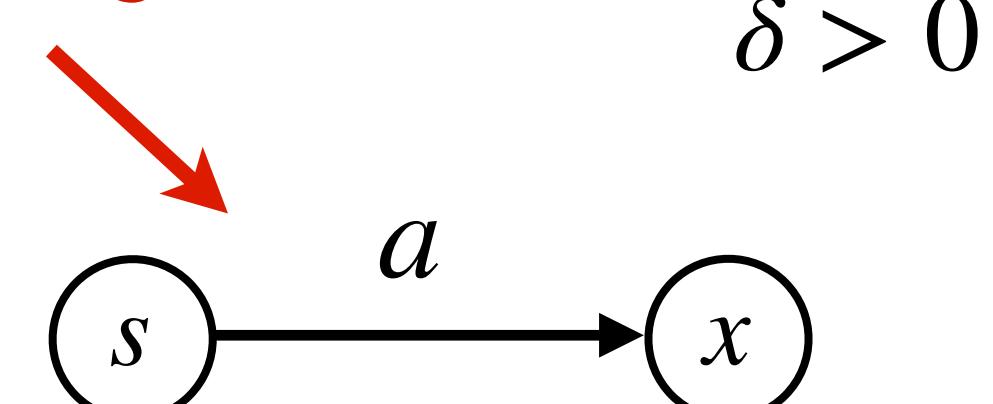
Why flow value increases?



G

An incoming edge
to s is not possible

Can it be a backward edge? No.



G_f

First edge in the
augmenting path

Augmenting Flows via Residual Networks

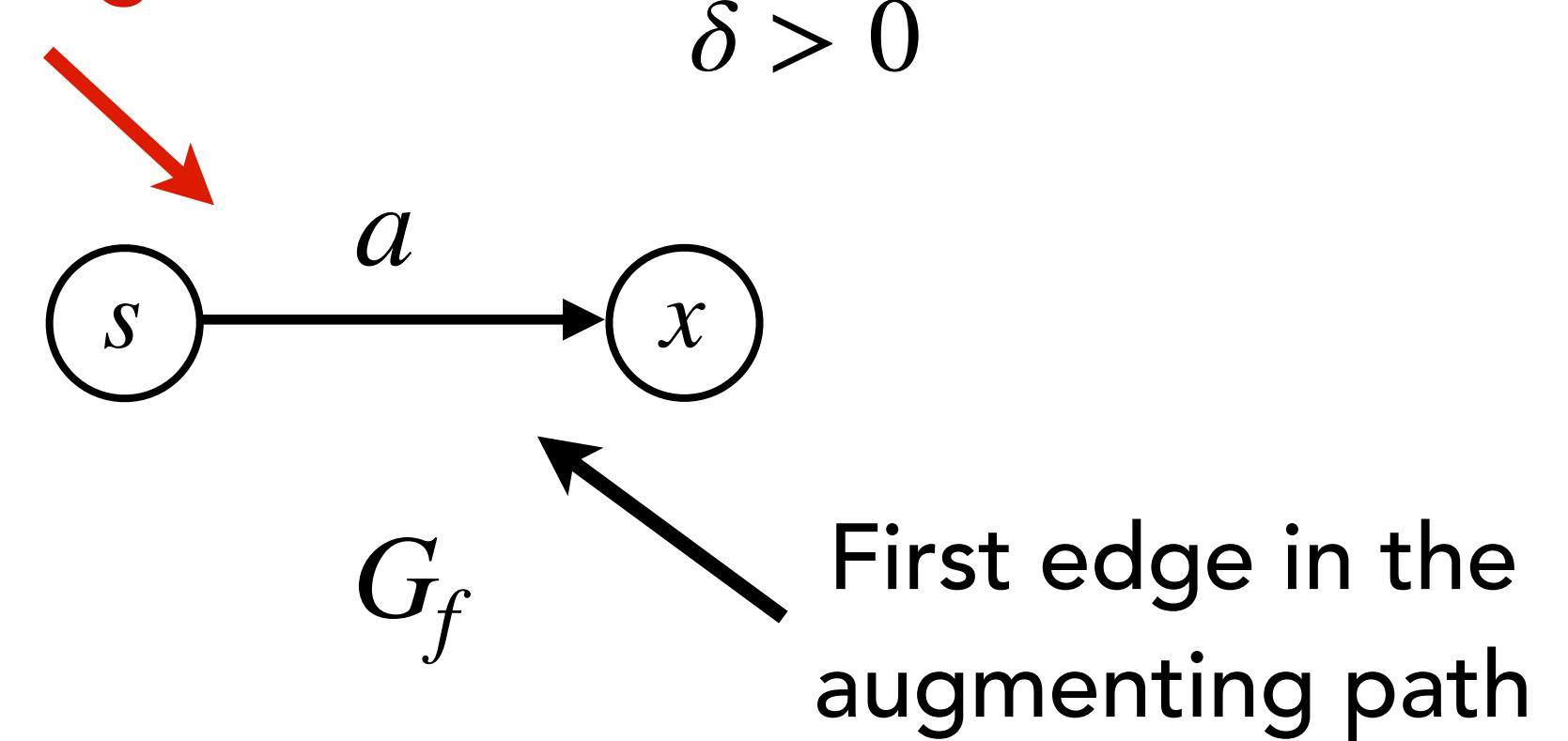
- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?

G

Can it be a backward edge? No.

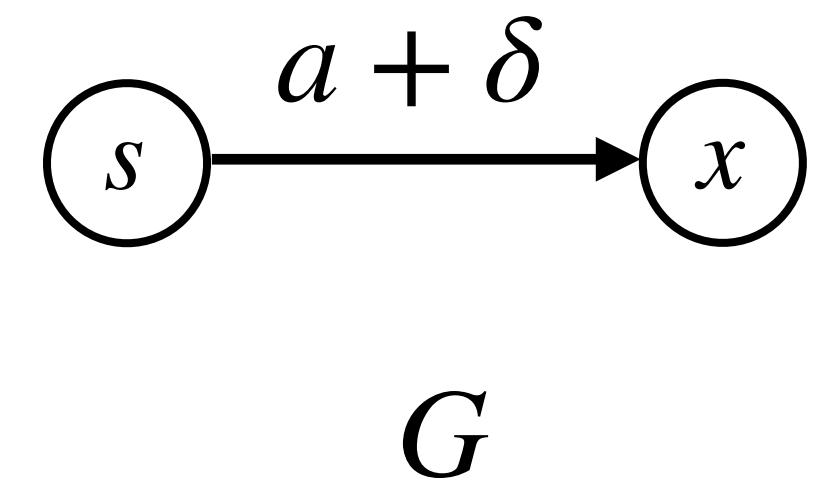


Augmenting Flows via Residual Networks

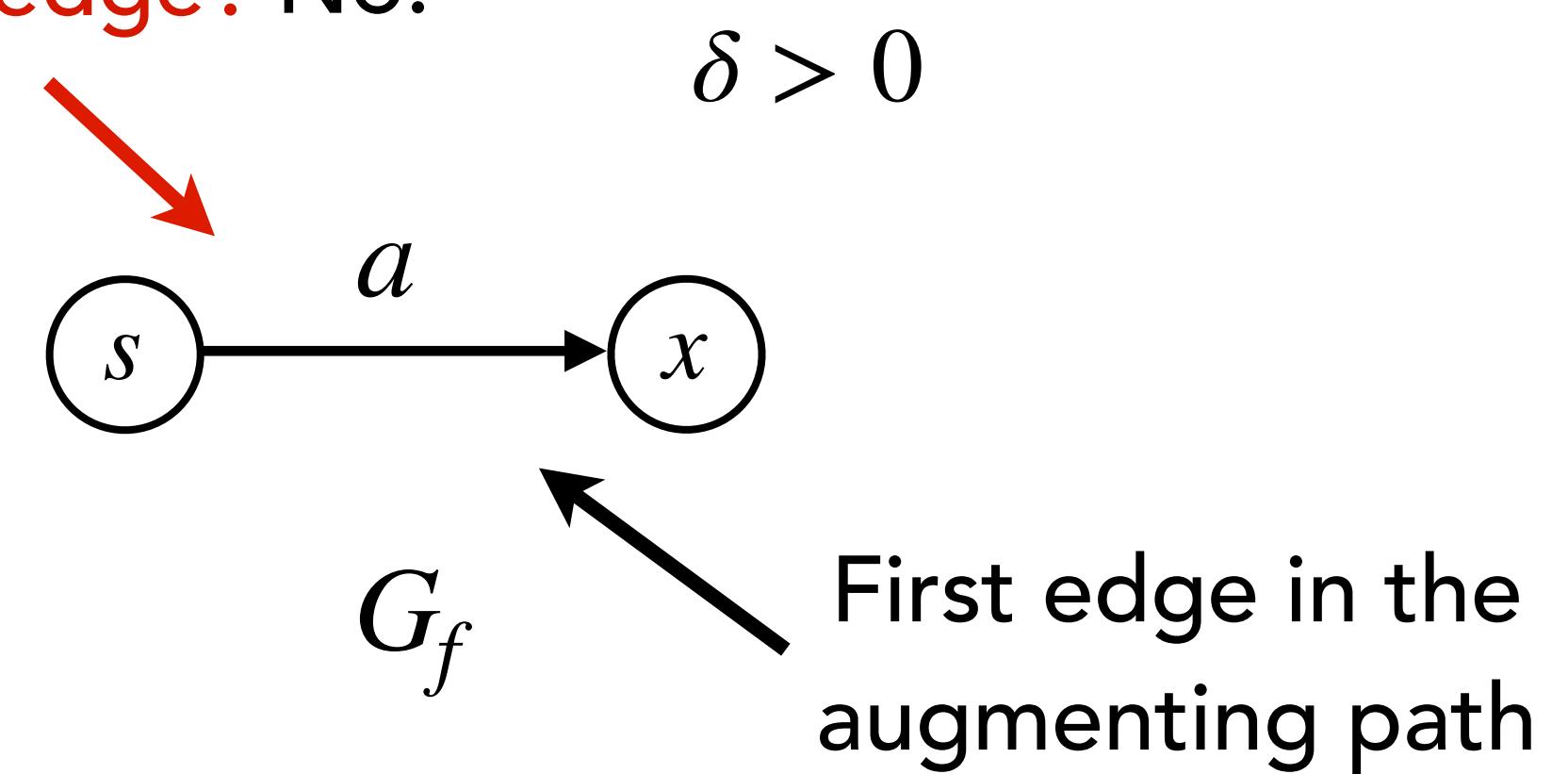
- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

Note: Path P is called an **augmenting path**.

Why flow value increases?



Can it be a backward edge? No.

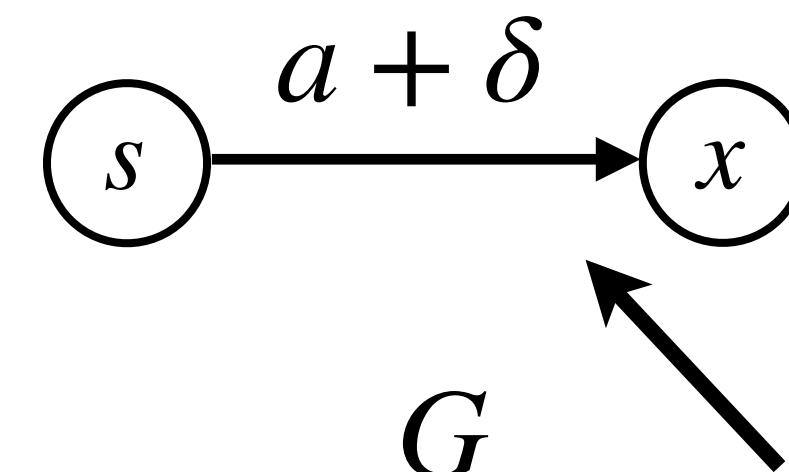


Augmenting Flows via Residual Networks

- Find $s \rightsquigarrow t$ path P in the residual network G_f and its **bottleneck capacity δ** .
- For every $(u, v) \in P$:
 - If $(u, v) \in E(G)$, add δ flow to (u, v) in f .
 - If $(v, u) \in E(G)$, subtract δ flow from (v, u) in f .

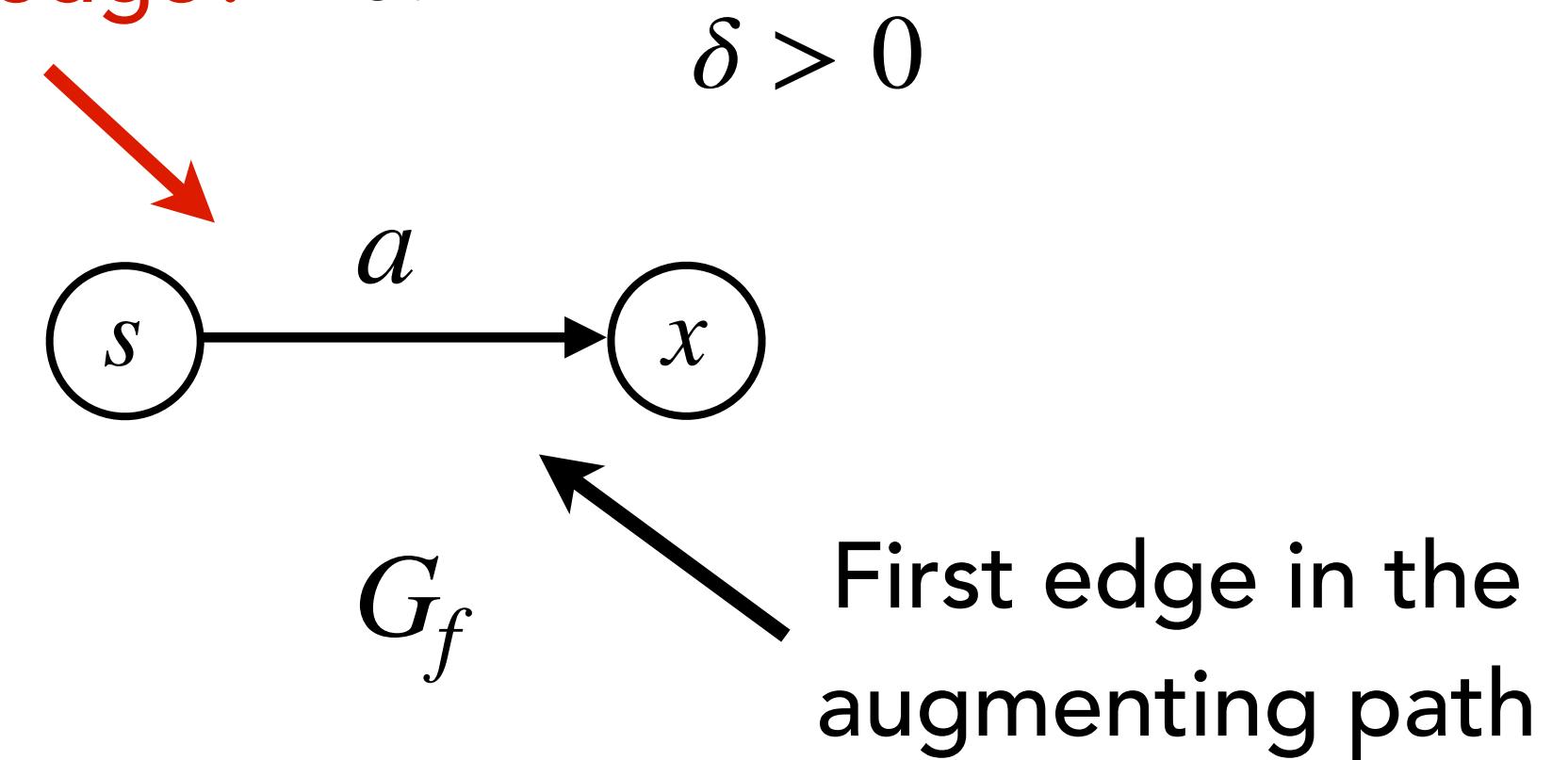
Note: Path P is called an **augmenting path**.

Why flow value increases?



Increased flow by δ

Can it be a backward edge? No.



Ford-Fulkerson Method

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Ford-Fulkerson Method

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Why f will be maximum when loop breaks?

Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Theorem: If there is **no augmenting path** in the residual network G_f , then f is a maximum flow.

Ford-Fulkerson Method: Correctness

Theorem: If there is **no augmenting path** in the residual network G_f , then f is a maximum flow.

Proof: We need to study **cuts** and **max-flow, min-cut theorem** for the proof.

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$ $O(|E|)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightsquigarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

$O(|E|)$

Loop may run for $|f^*|$ time,
where f^* is a max-flow,
as flow may increase by one
with every iteration

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

$O(|E|)$

Loop may run for $|f^*|$ time,
where f^* is a max-flow,
as flow may increase by one
with every iteration

$O(|E|)$ because $|E| \geq |V| - 1$

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$ $O(|E|)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Loop may run for $|f^*|$ time,
where f^* is a max-flow,
as flow may increase by one
with every iteration

$O(|E|)$ because $|E| \geq |V| - 1$

Time Complexity: $O(|E| \cdot |f^*|)$

Ford-Fulkerson Method: Analysis

Ford-Fulkerson(G, s, t):

1. **for** each edge $(u, v) \in E(G)$ $O(|E|)$
2. $f(u, v) = 0$
3. **while** there exists an $s \rightarrow t$ path P in the residual network G_f
4. $\delta = \text{Min}(c_f(u, v) : (u, v) \text{ in } P)$
5. **for** each edge (u, v) in P
6. **if** $(u, v) \in E$
7. $f(u, v) = f(u, v) + \delta$
8. **else**
9. $f(v, u) = f(v, u) - \delta$
10. **return** f

Loop may run for $|f^*|$ time,
where f^* is a max-flow,
as flow may increase by one
with every iteration

$O(|E|)$ because $|E| \geq |V| - 1$

Time Complexity: $O(|E| \cdot |f^*|)$

Note: Analysis is valid when capacities are **integer**.

Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson may **not terminate** when some capacities are **irrational**.

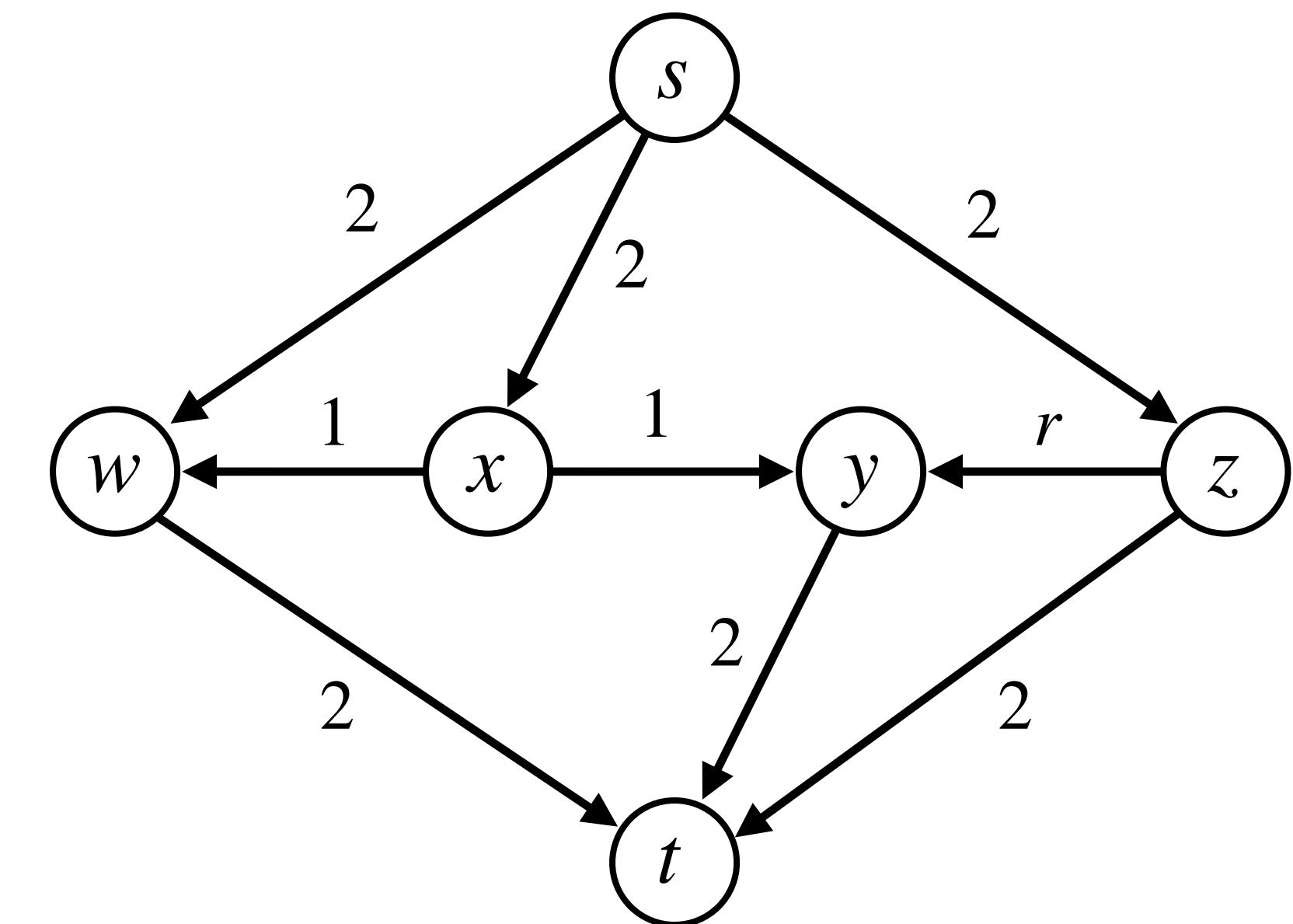
Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson may **not terminate** when some capacities are **irrational**.

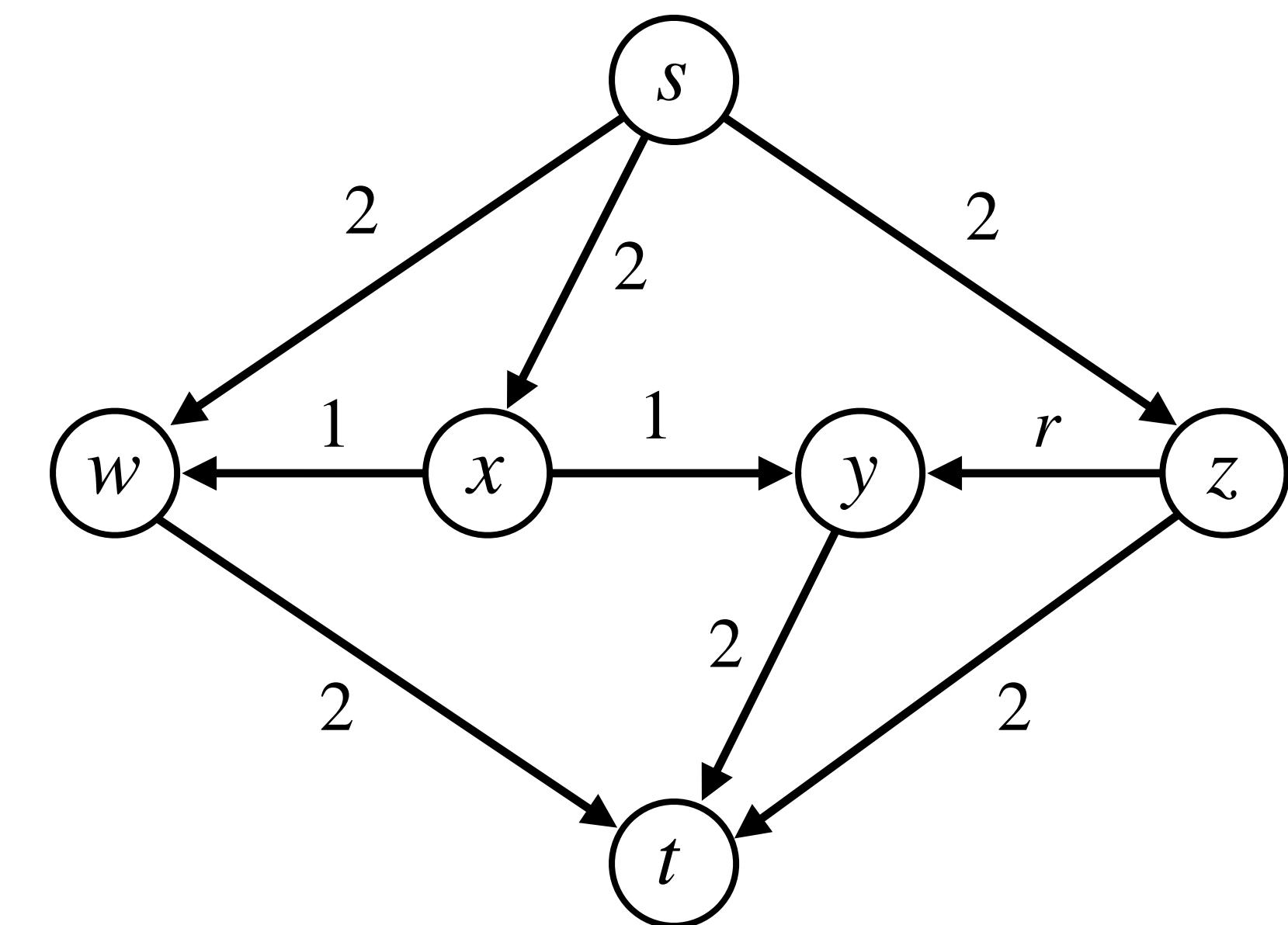
A famous example is on the next slide.

Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson Method: A Non-terminating Case



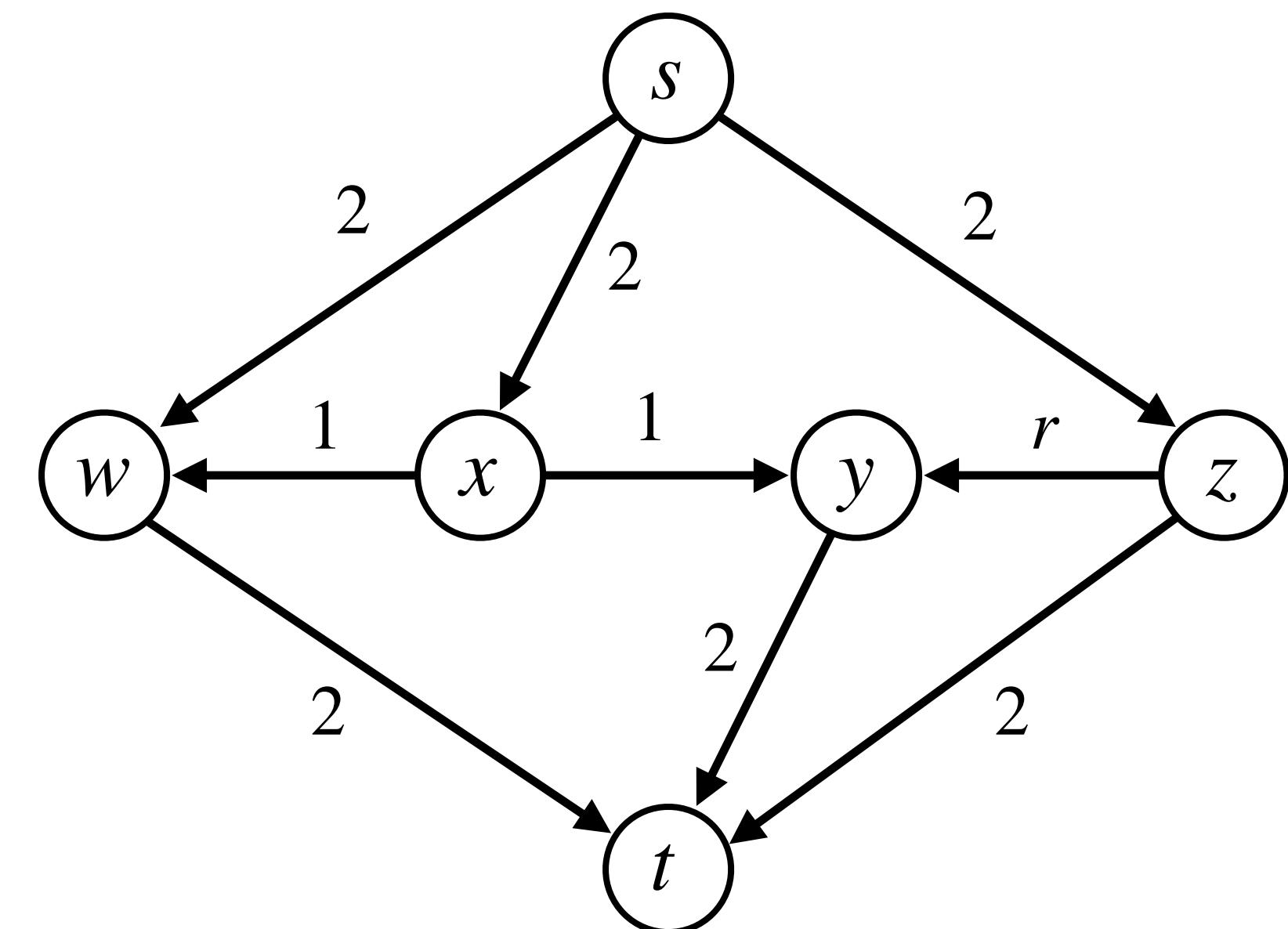
Ford-Fulkerson Method: A Non-terminating Case



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

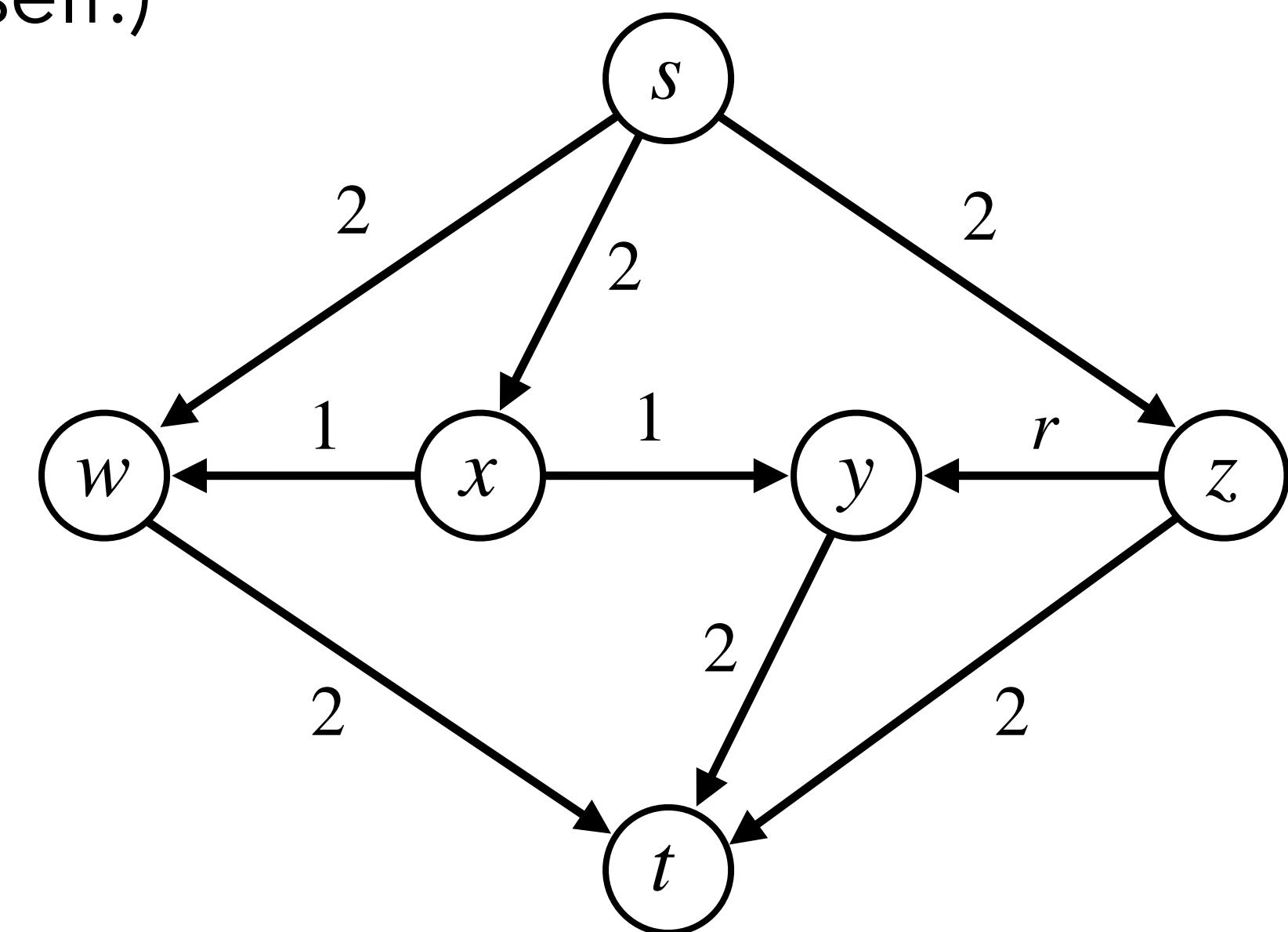


$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)



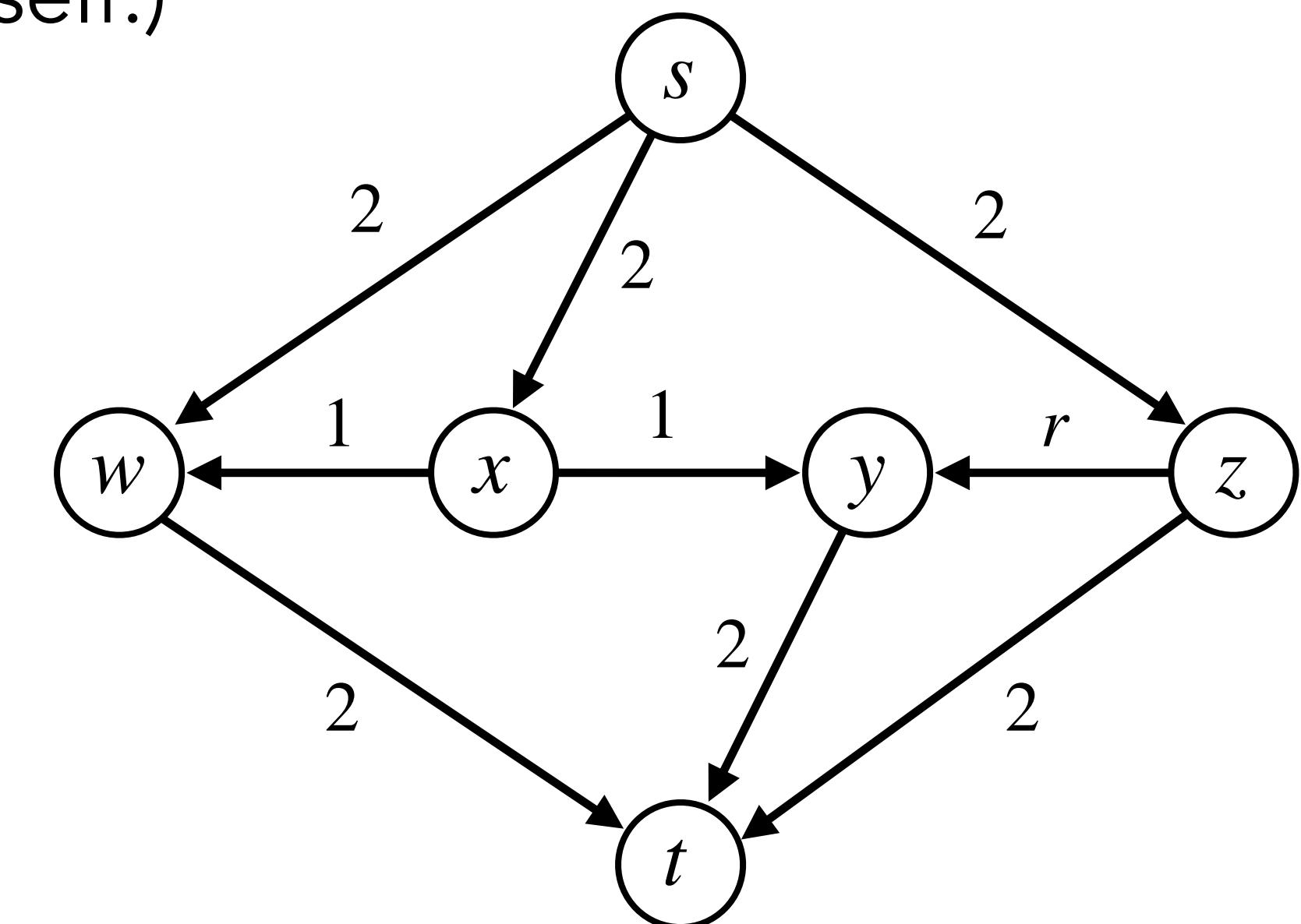
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1		
2		
3		
4		
5		



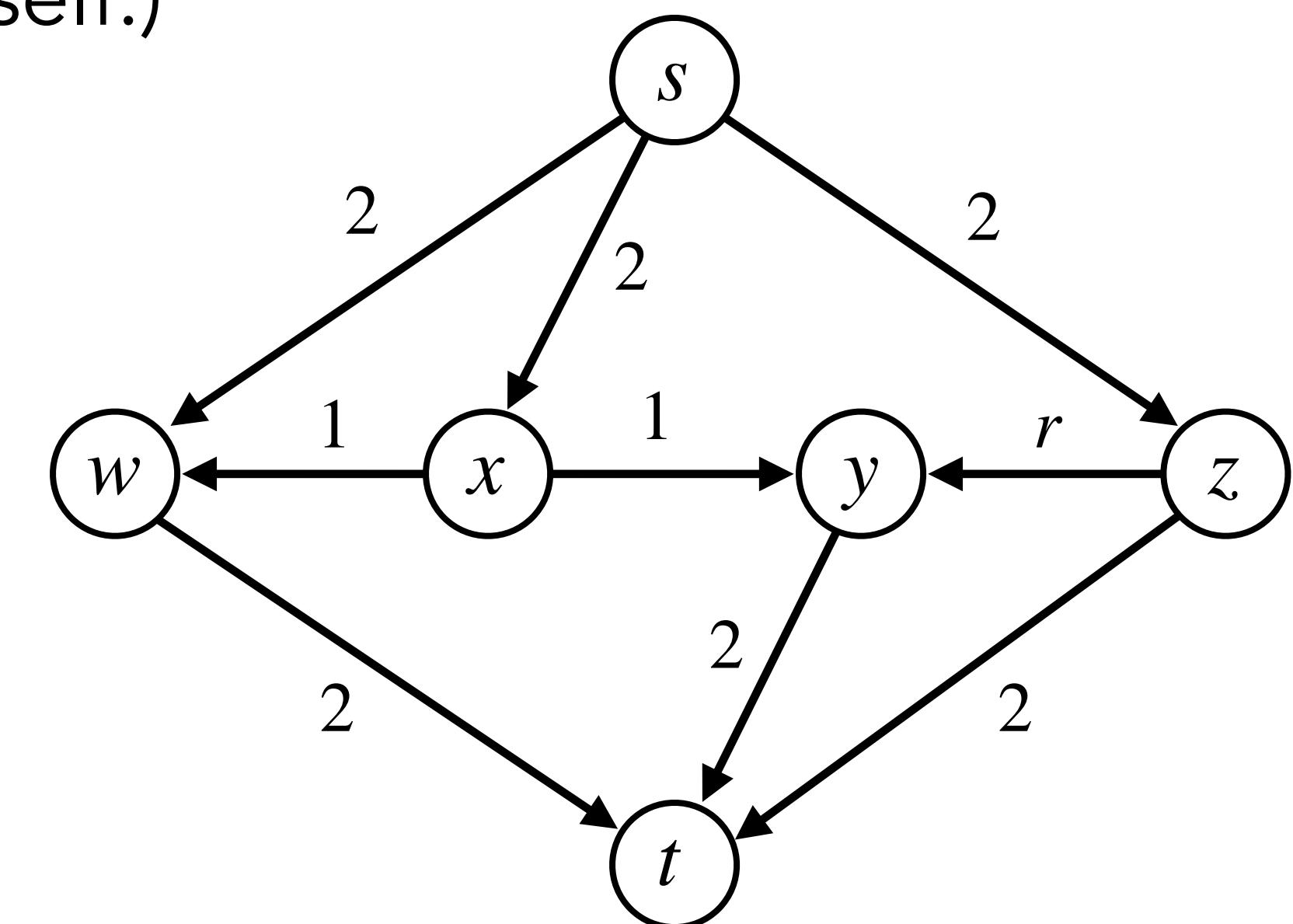
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1	P	1
2		
3		
4		
5		



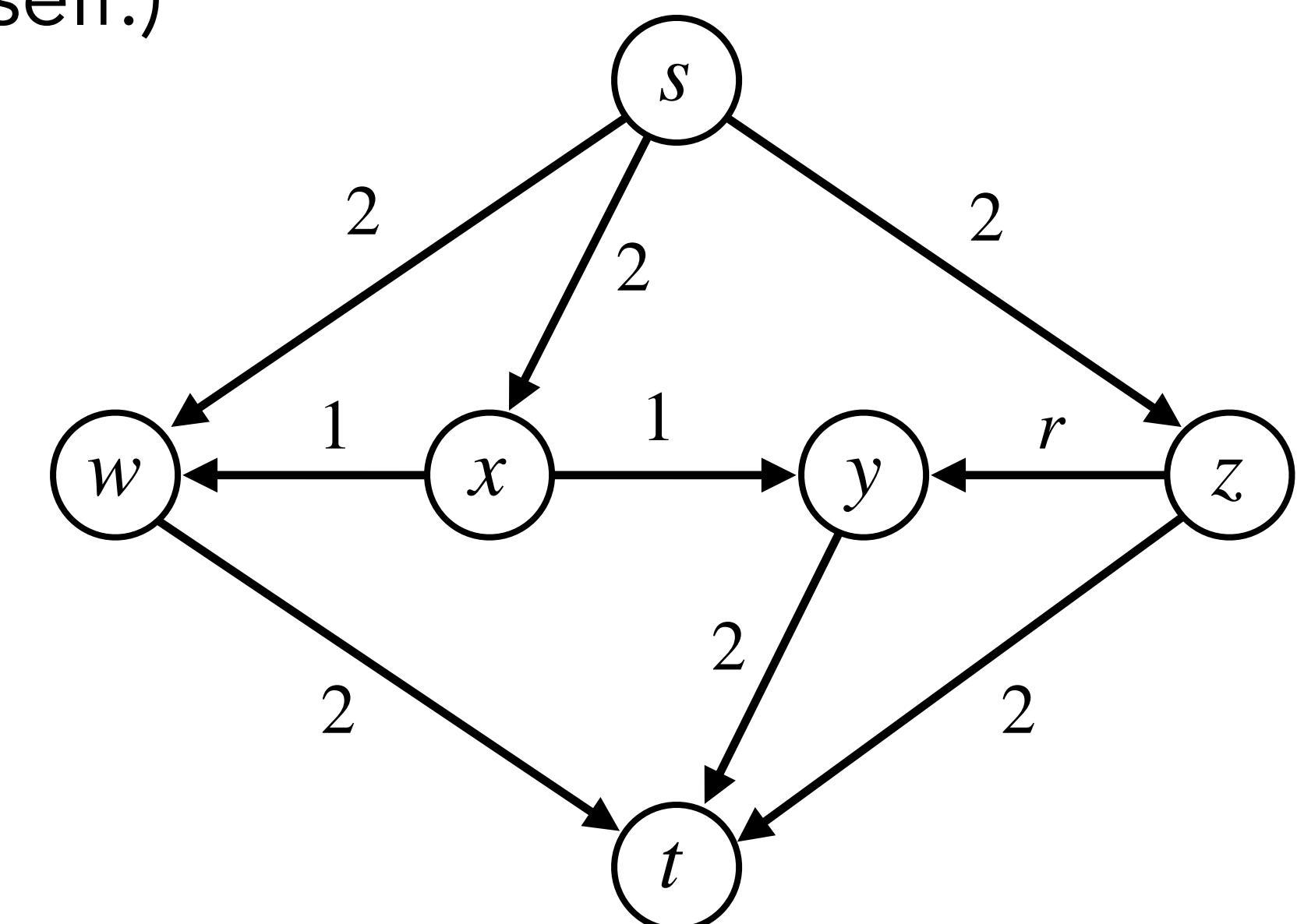
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1	P	1
2	P_1	r
3		
4		
5		



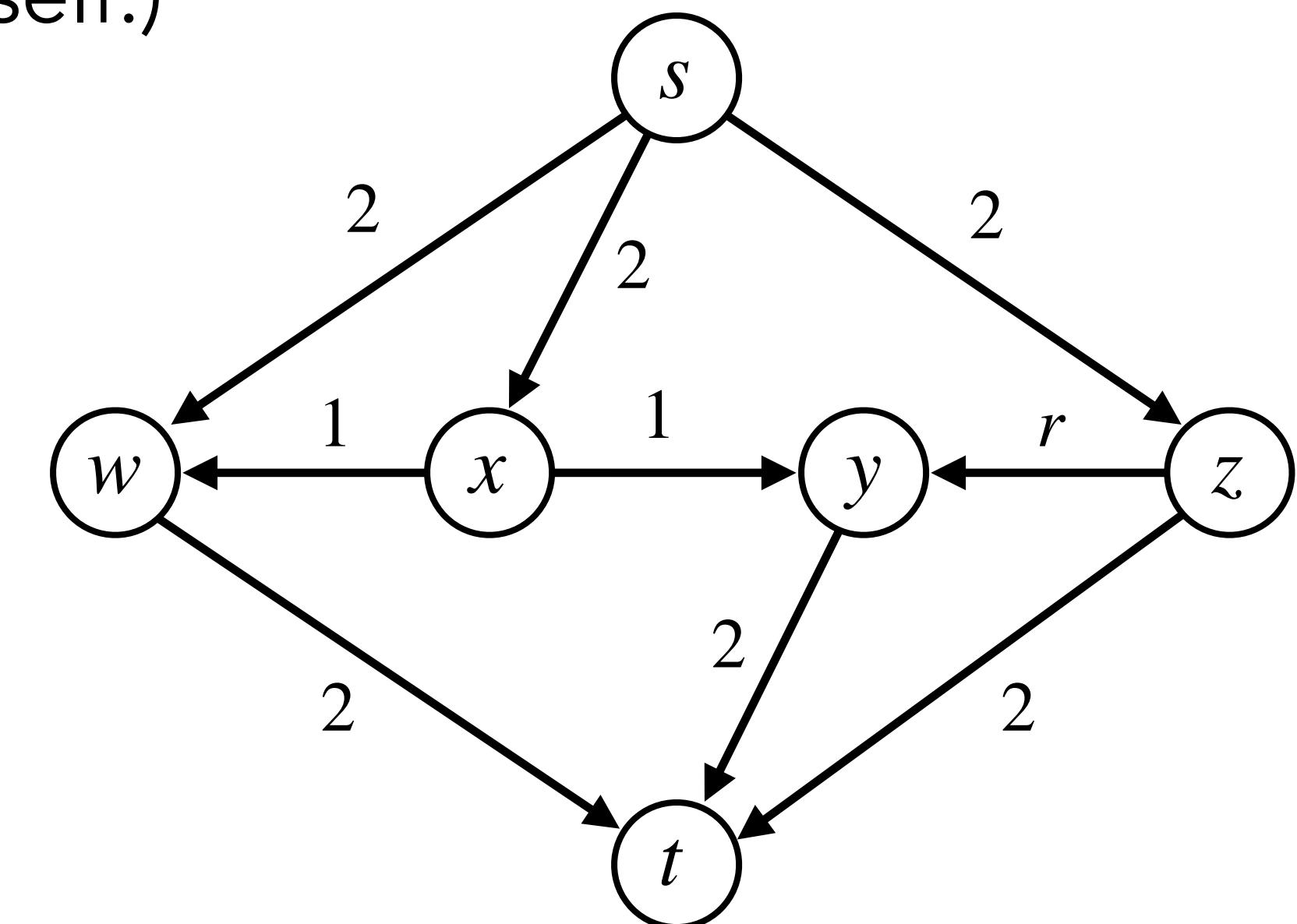
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1	P	1
2	P_1	r
3	P_2	r
4		
5		



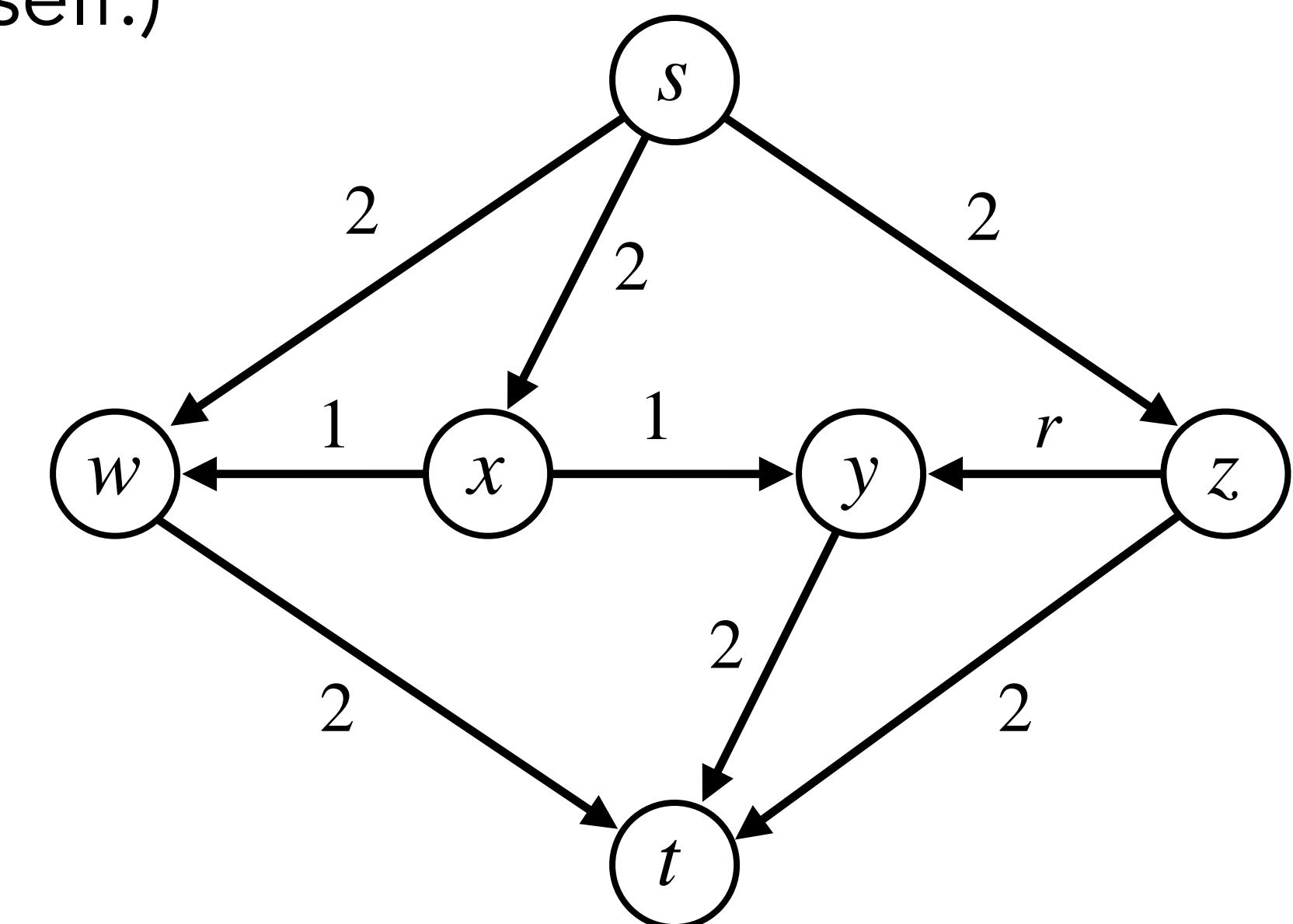
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1	P	1
2	P_1	r
3	P_2	r
4	P_1	r^2
5		



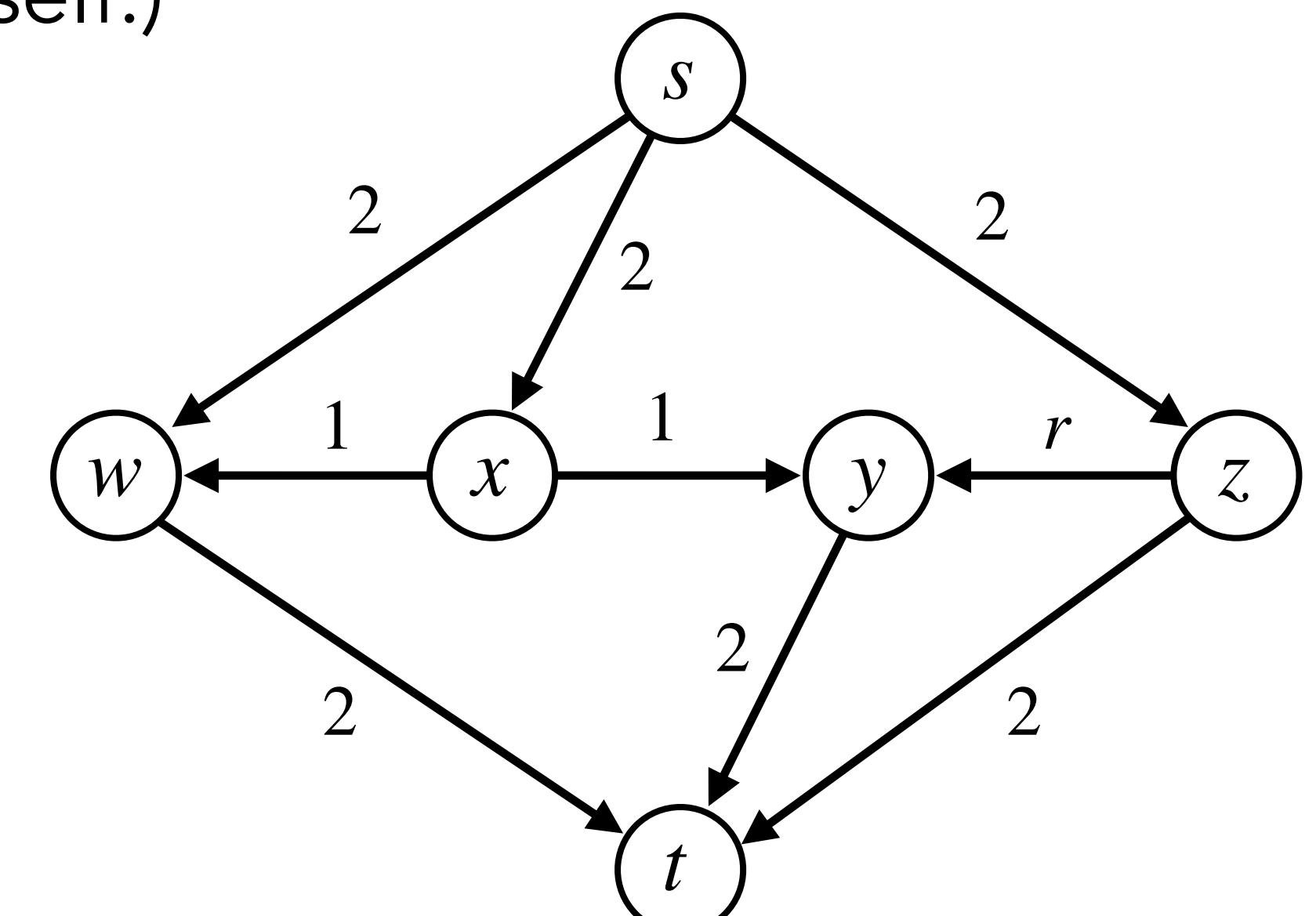
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

Step	Augmenting Path	Sent Flow
1	P	1
2	P_1	r
3	P_2	r
4	P_1	r^2
5	P_3	r^2



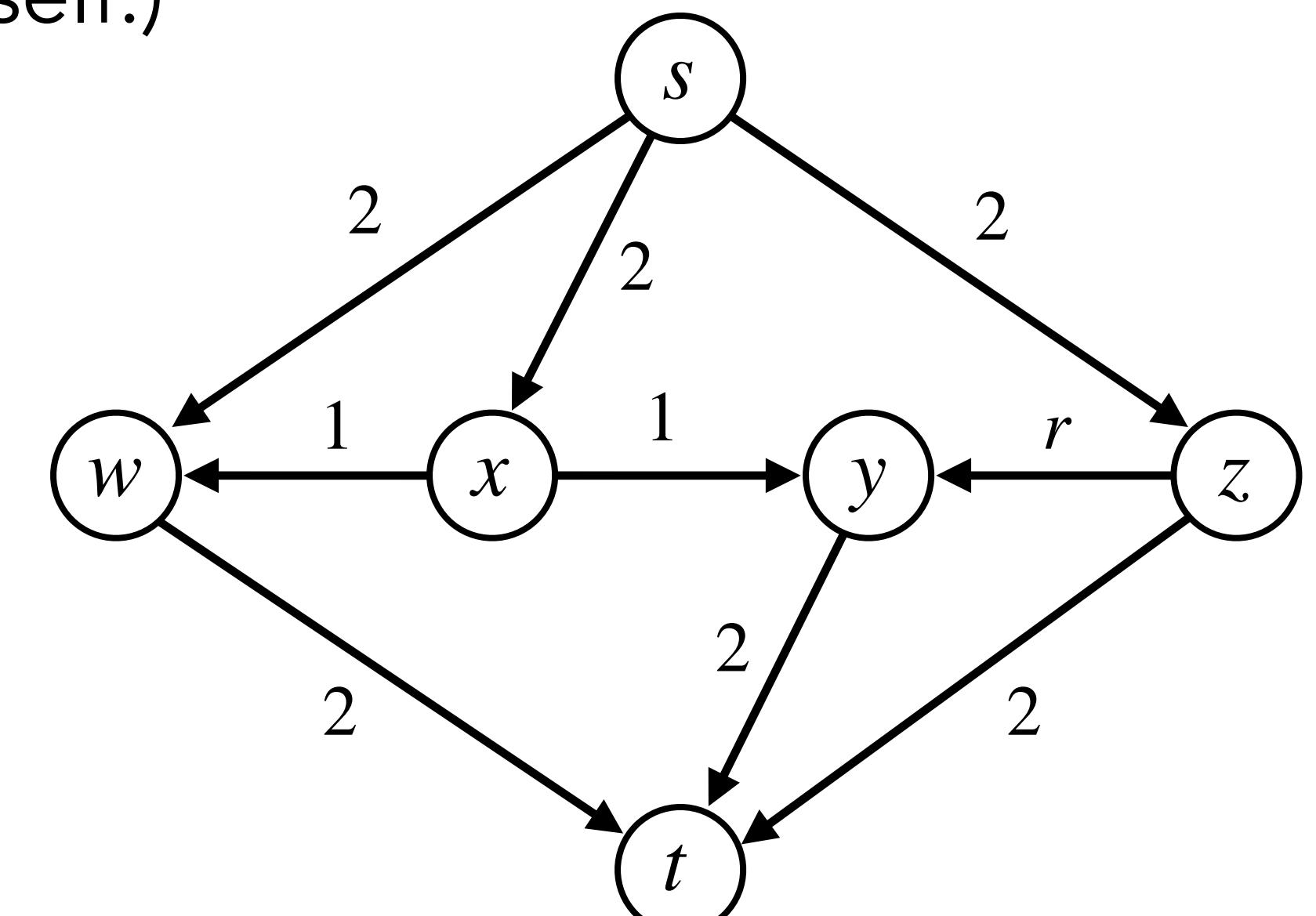
$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

Ford-Fulkerson Method: A Non-terminating Case

Let $P = \langle s, x, y, z \rangle$, $P_1 = \langle s, z, y, x, w \rangle$, $P_2 = \langle s, w, y, z, t \rangle$, $P_3 = \langle w, x, y, t \rangle$ in residual networks.

Then we can perform the following 5 steps: (Verify it yourself.)

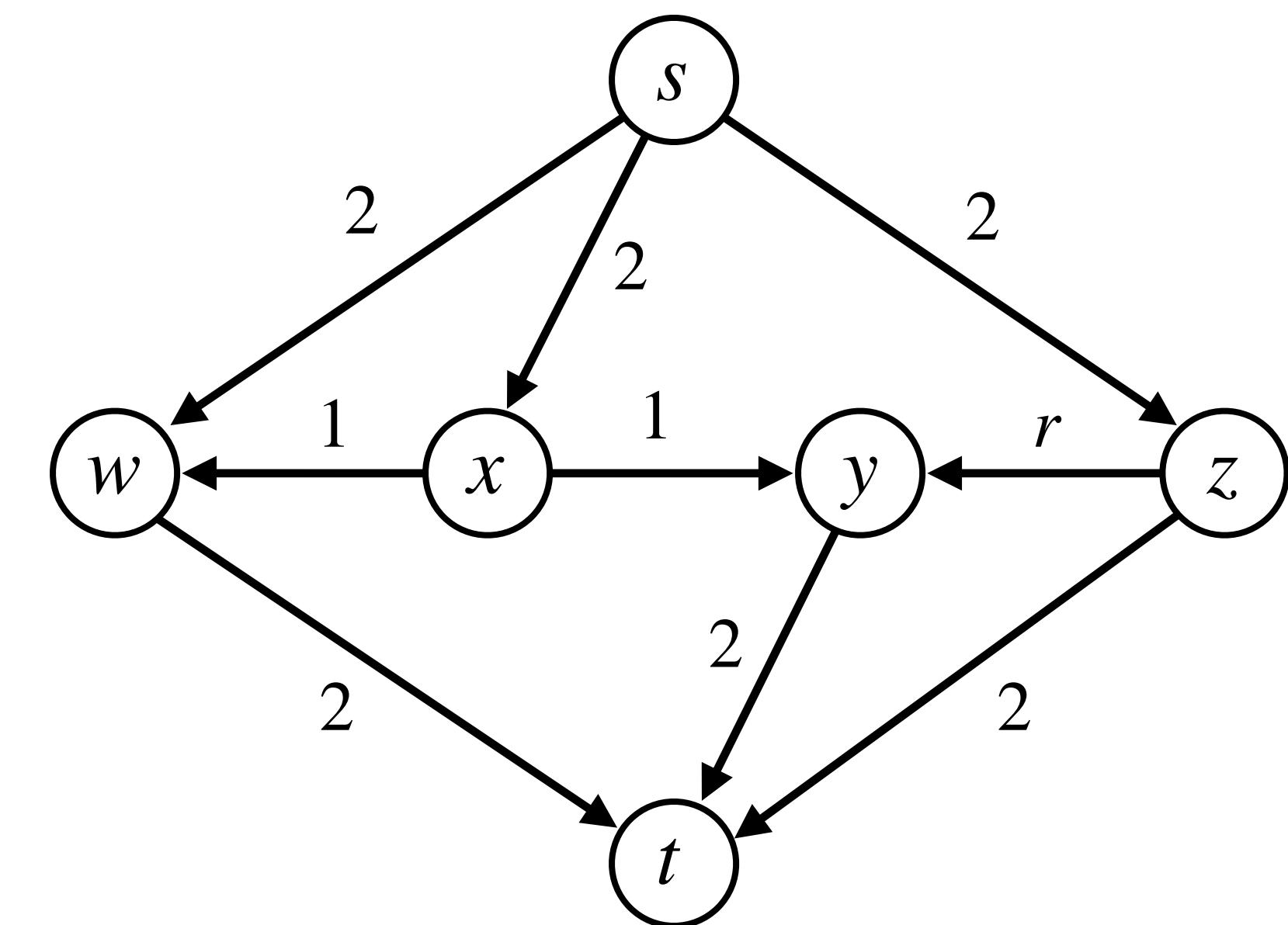
Step	Augmenting Path	Sent Flow
1	P	1
2	P_1	r
3	P_2	r
4	P_1	r^2
5	P_3	r^2



$$r = (\sqrt{5} - 1)/2 \text{ is chosen so that } r^2 = 1 - r$$

We can repeat **steps 2 – 5** with flows r^3, r^3, r^4 , and r^4 and keep doing so...

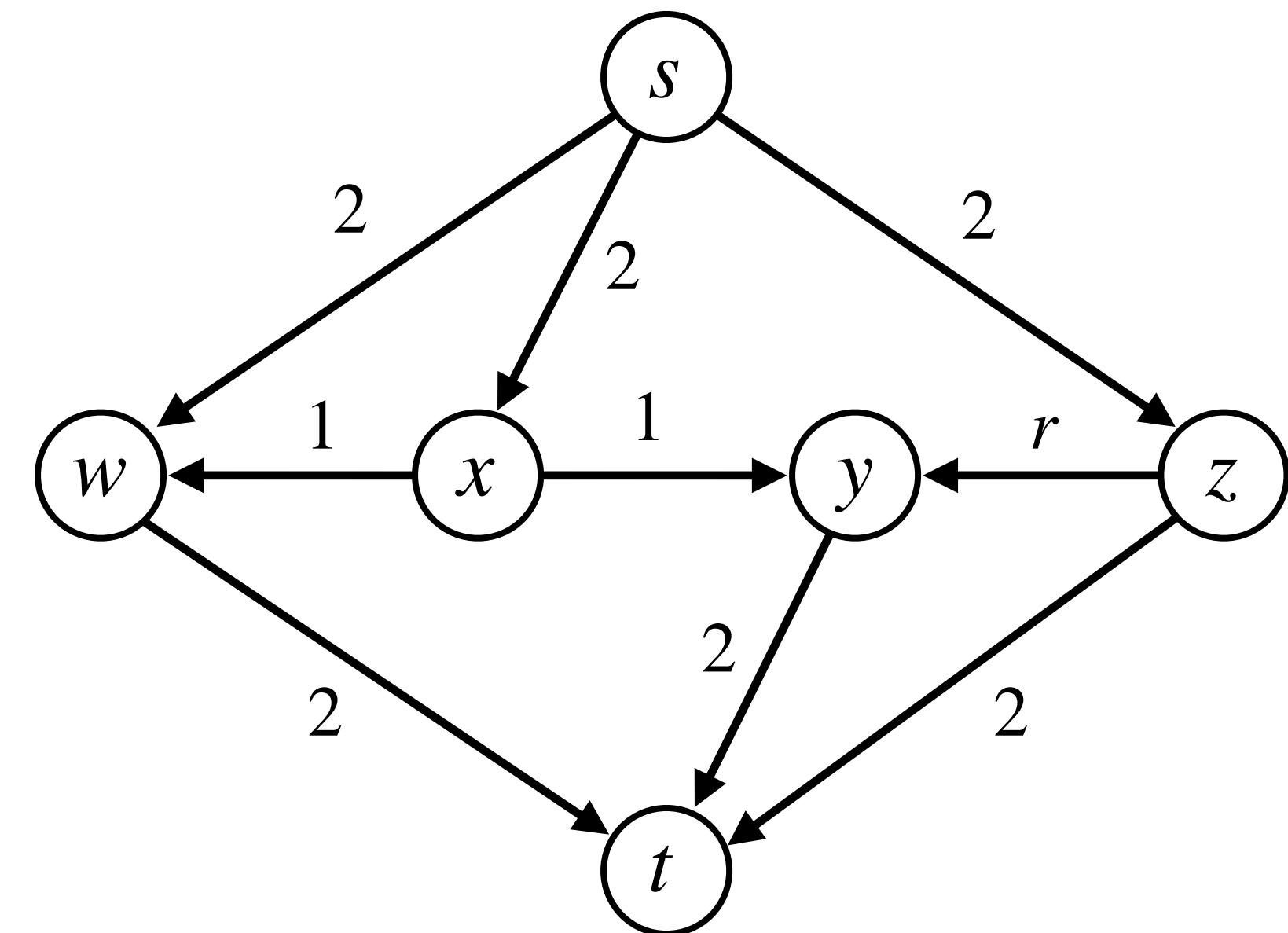
Ford-Fulkerson Method: A Non-terminating Case



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

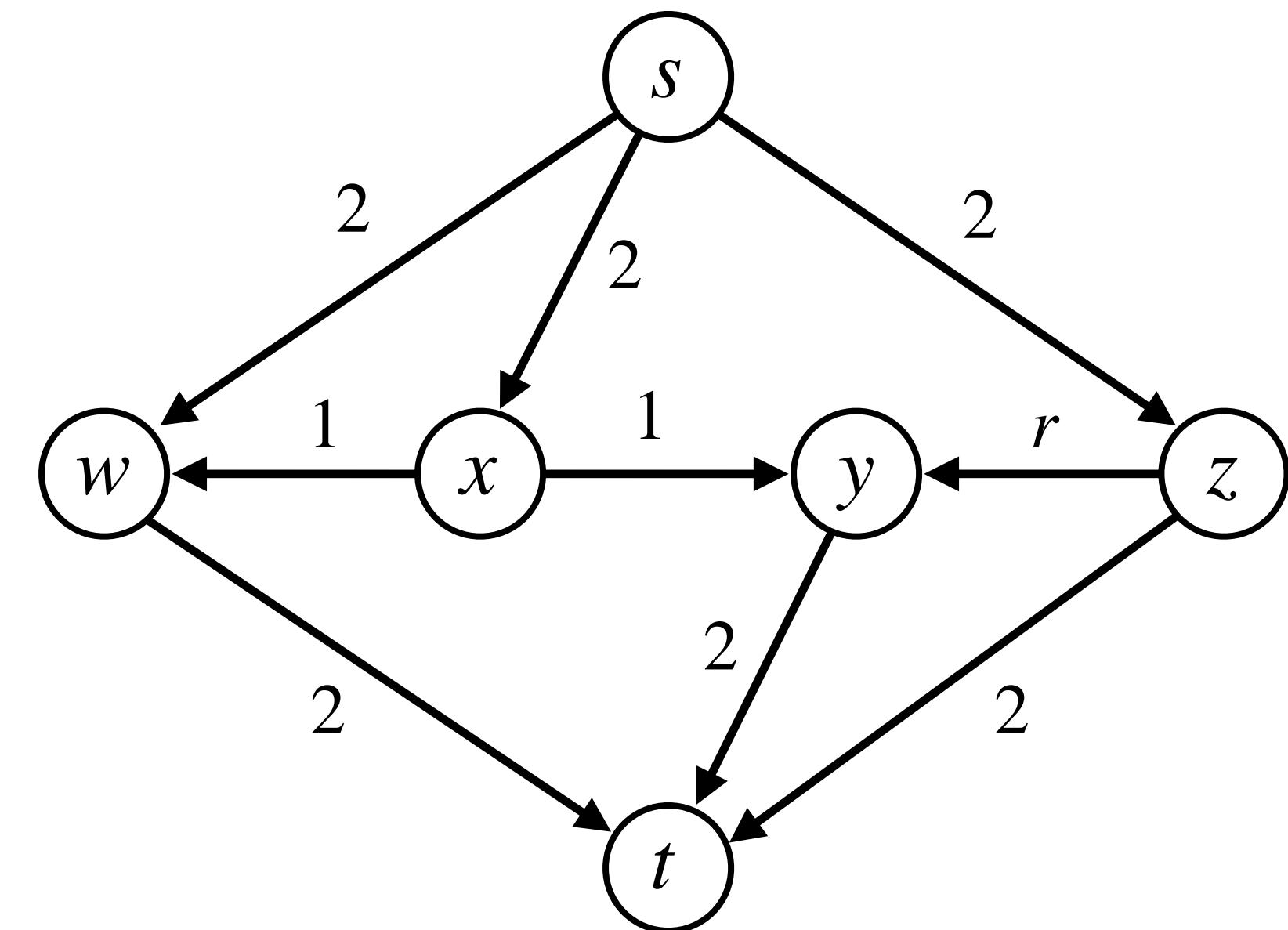
The total flow will converge to



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

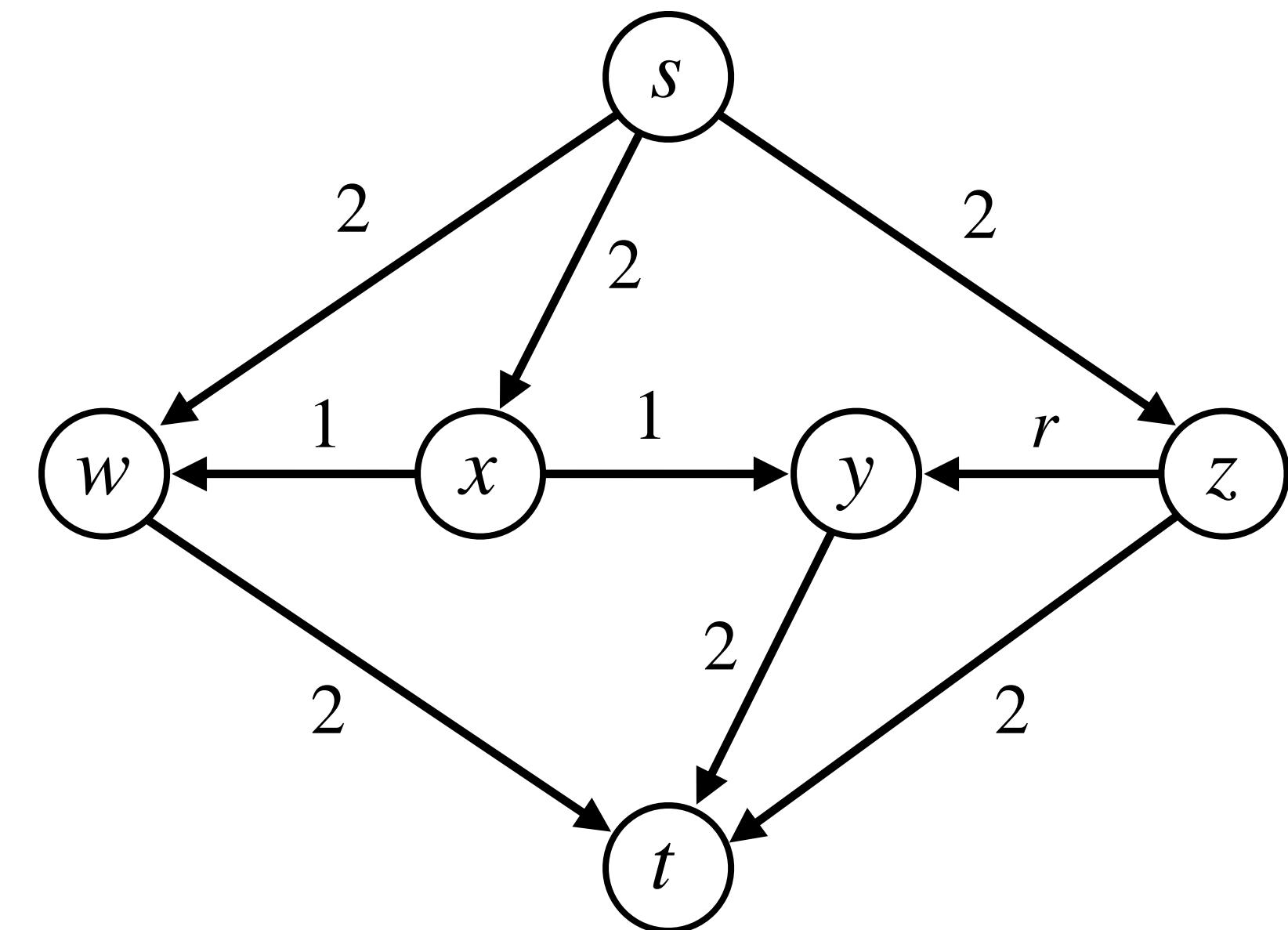
The total flow will converge to $1 + 2 \sum_{i=1}^{\infty} r^i =$



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

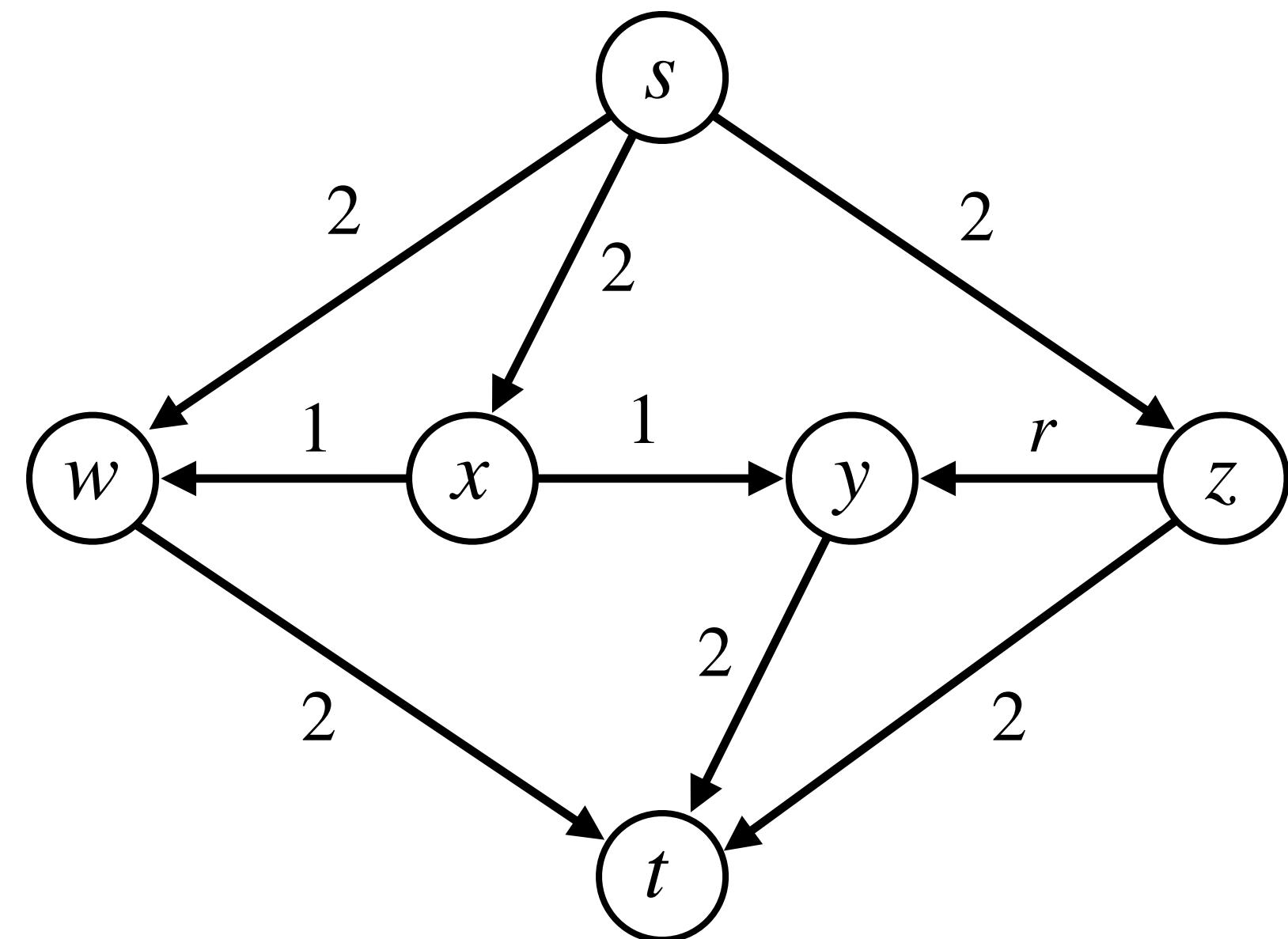
The total flow will converge to $1 + 2 \sum_{i=1}^{\infty} r^i = 2 + 3r$



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

The total flow will converge to $1 + 2 \sum_{i=1}^{\infty} r^i = 2 + 3r < 5$.

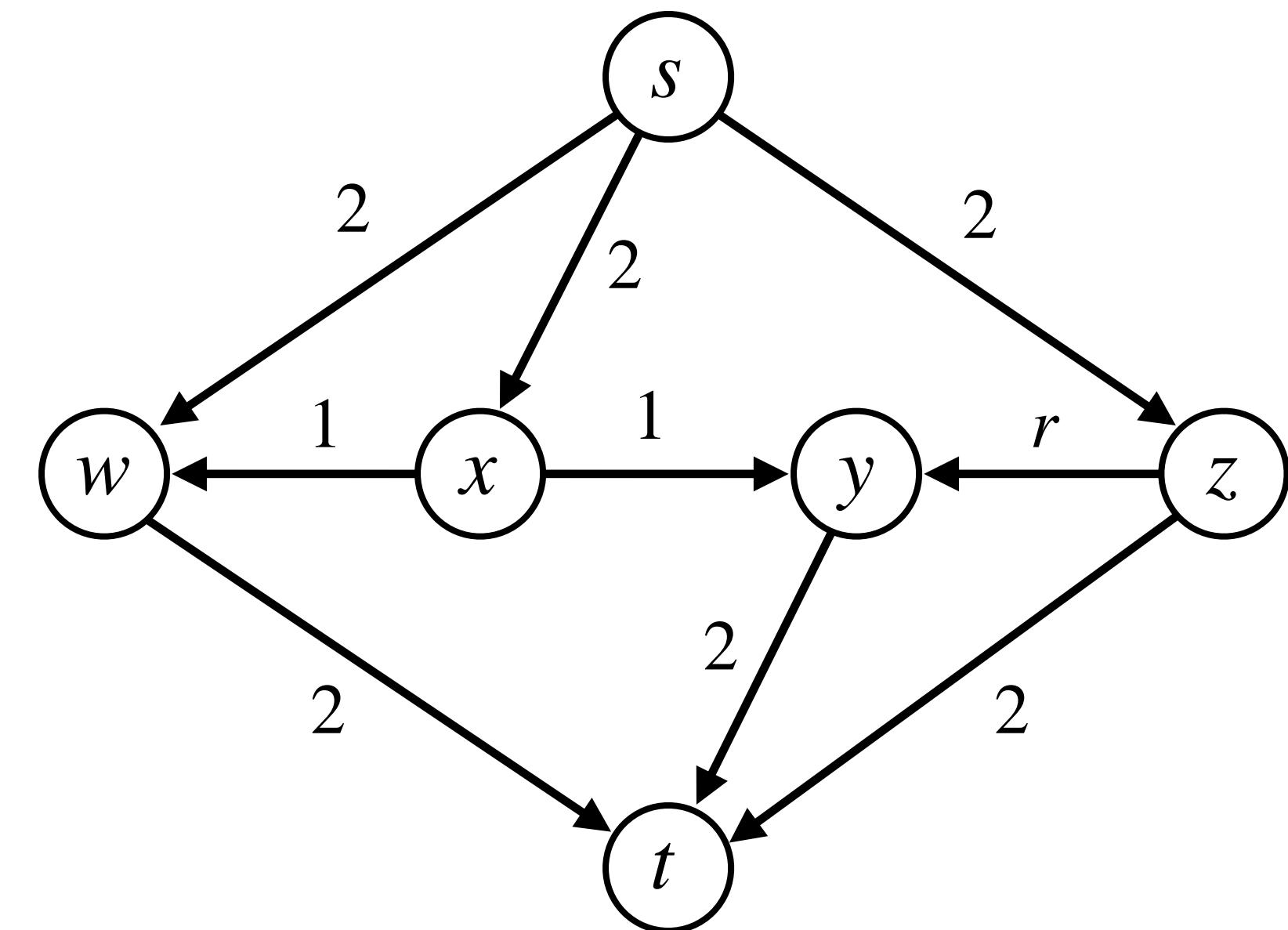


$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

The total flow will converge to $1 + 2 \sum_{i=1}^{\infty} r^i = 2 + 3r < 5$.

There is a flow with value 5 in the given network.



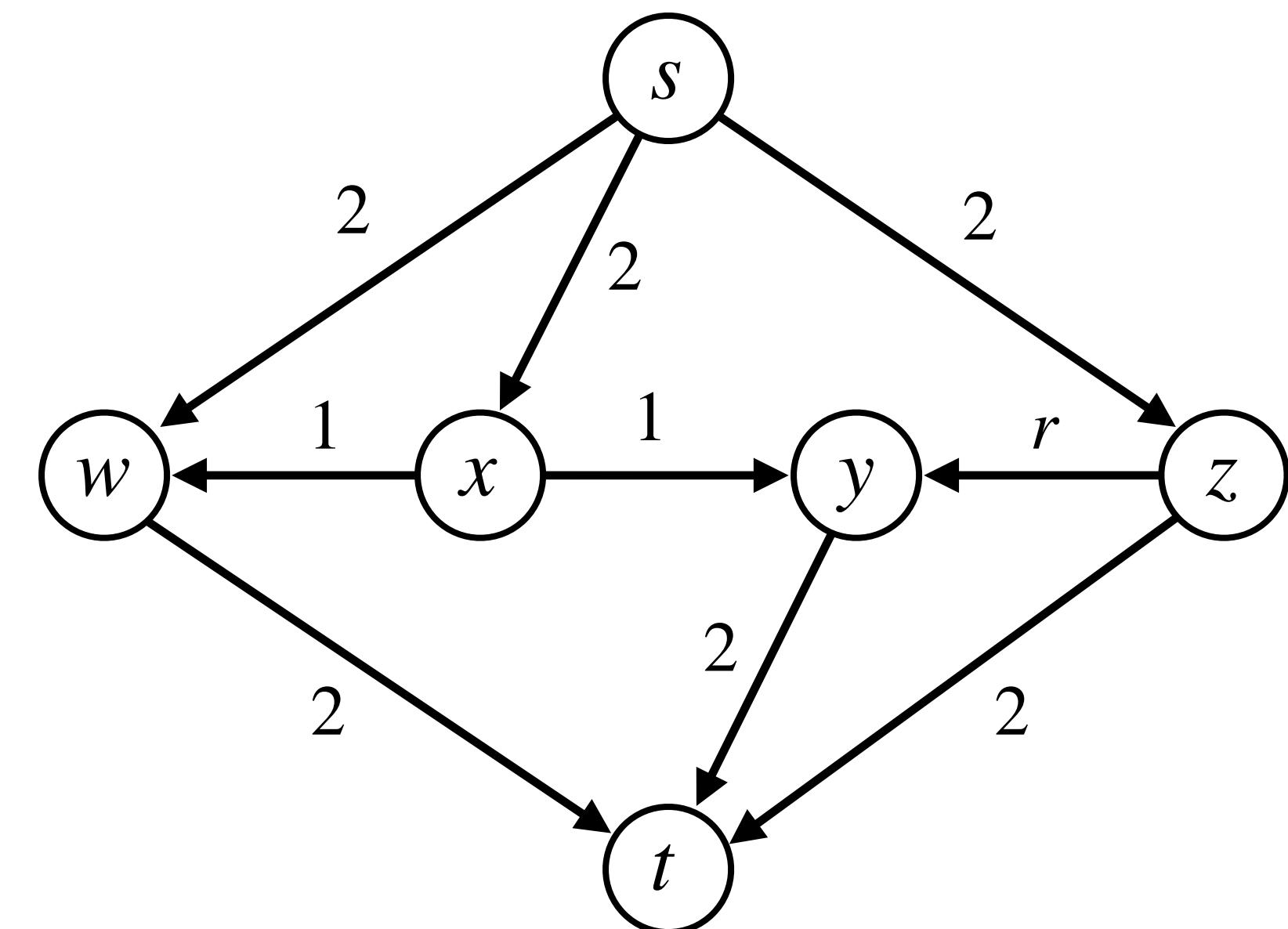
$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method: A Non-terminating Case

The total flow will converge to $1 + 2 \sum_{i=1}^{\infty} r^i = 2 + 3r < 5$.

There is a flow with value 5 in the given network.

Hence, the algorithm will **never terminate**.



$r = (\sqrt{5} - 1)/2$ is chosen so that $r^2 = 1 - r$

Ford-Fulkerson Method

Will Ford-Fulkerson terminate when capacities are rationals?

Ford-Fulkerson Method

Will Ford-Fulkerson terminate when capacities are rationals?

Yes, prove it yourself.

Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$

Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that

Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

Ford-Fulkerson Method: Correctness

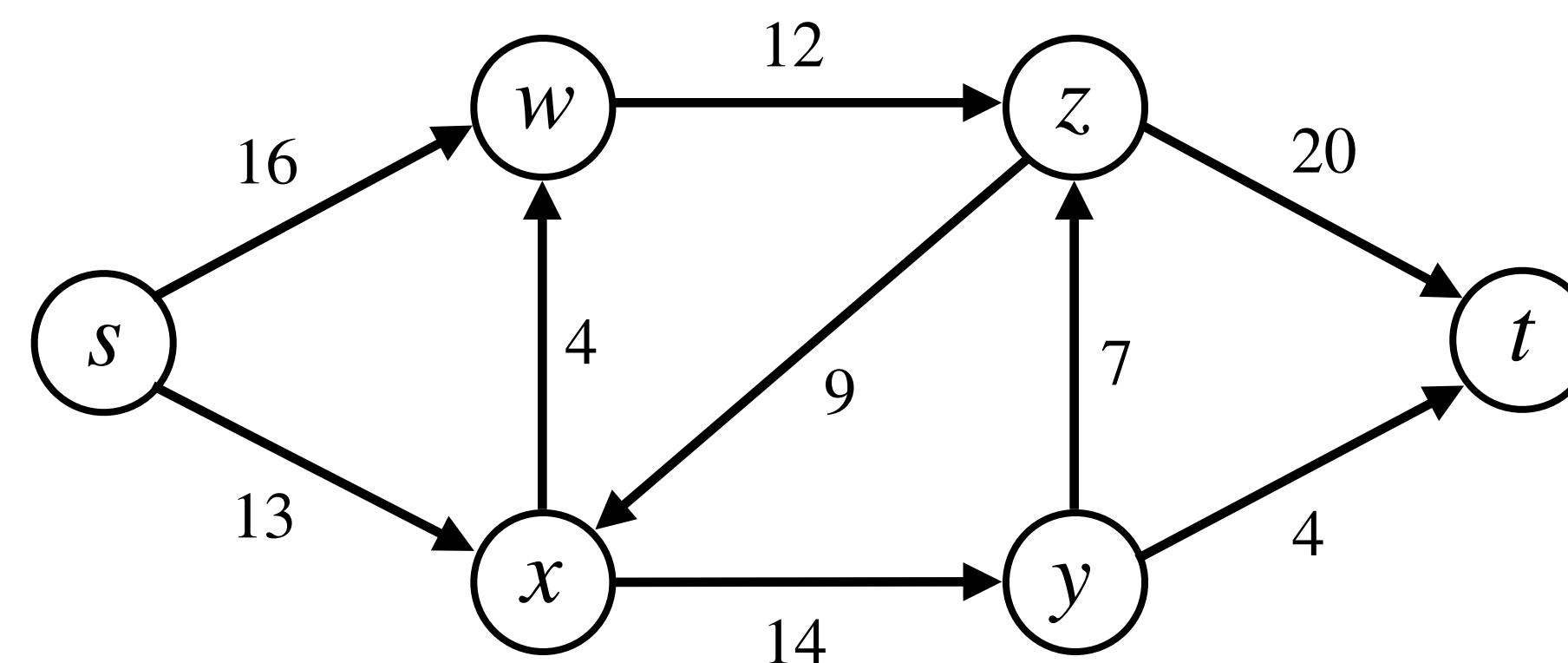
Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

Examples:

Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

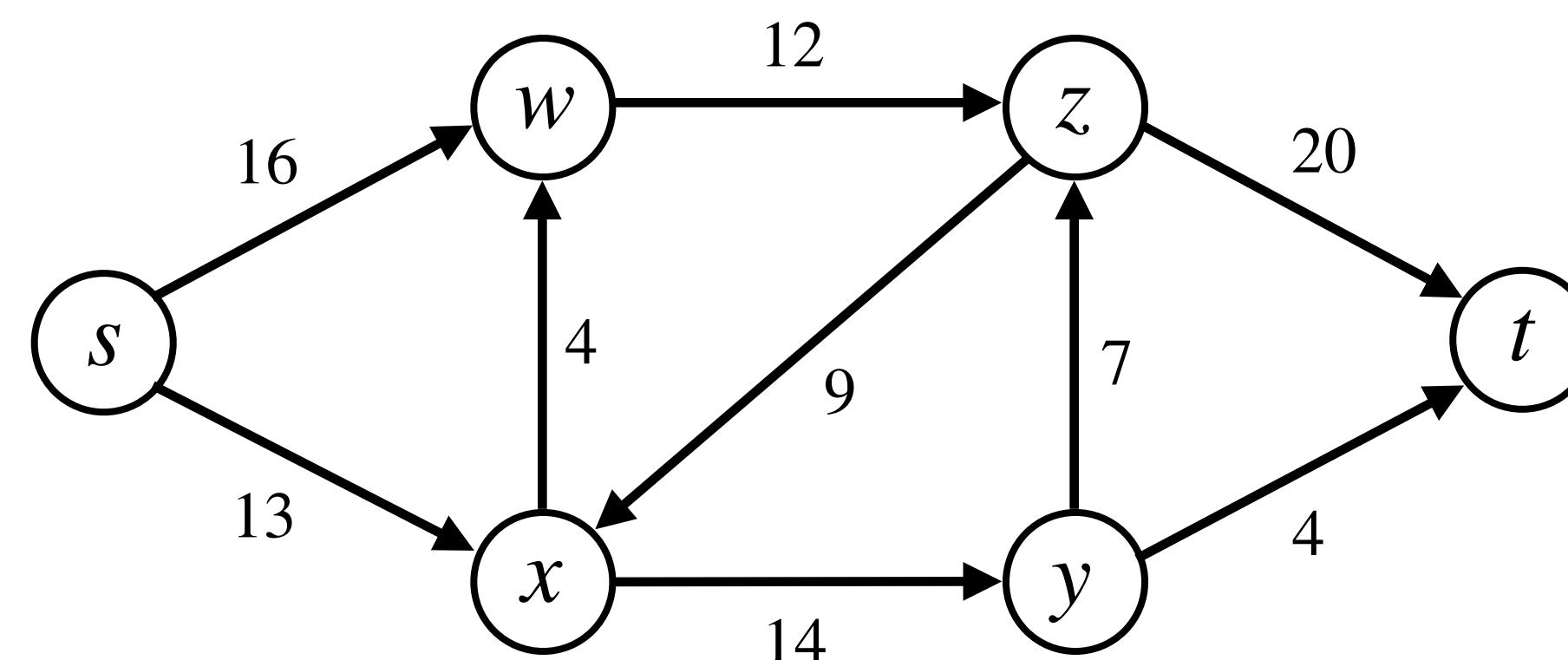
Examples:



Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

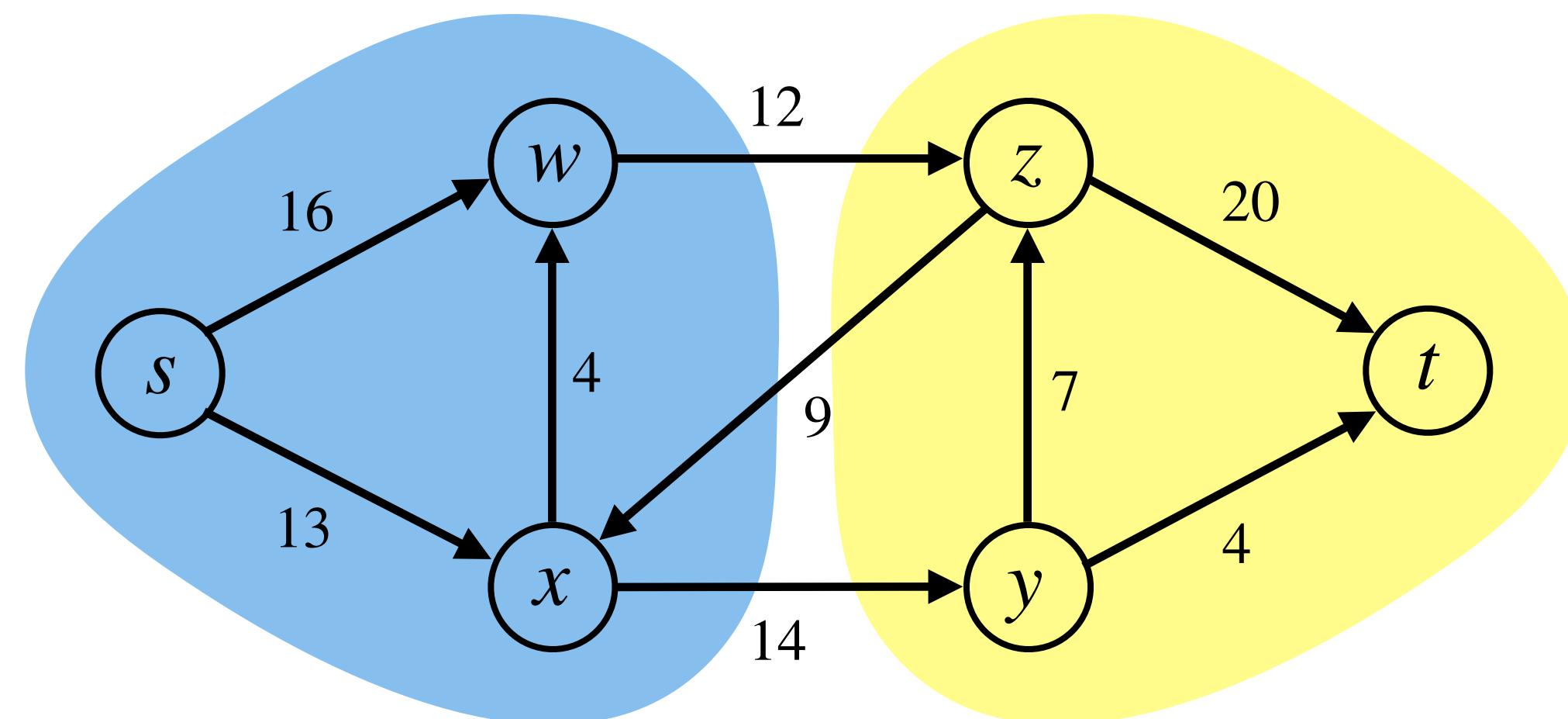
Examples:



Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

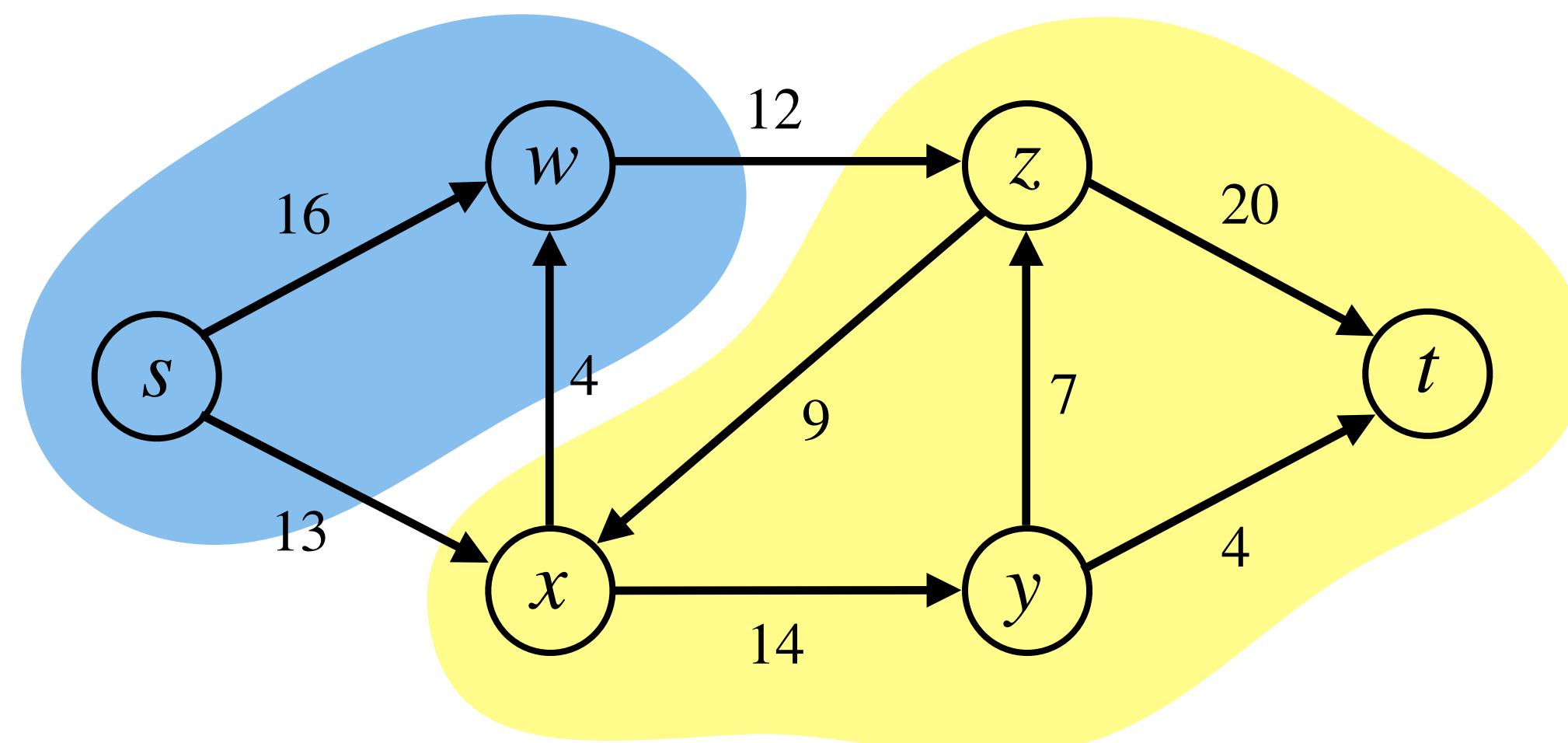
Examples:



Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

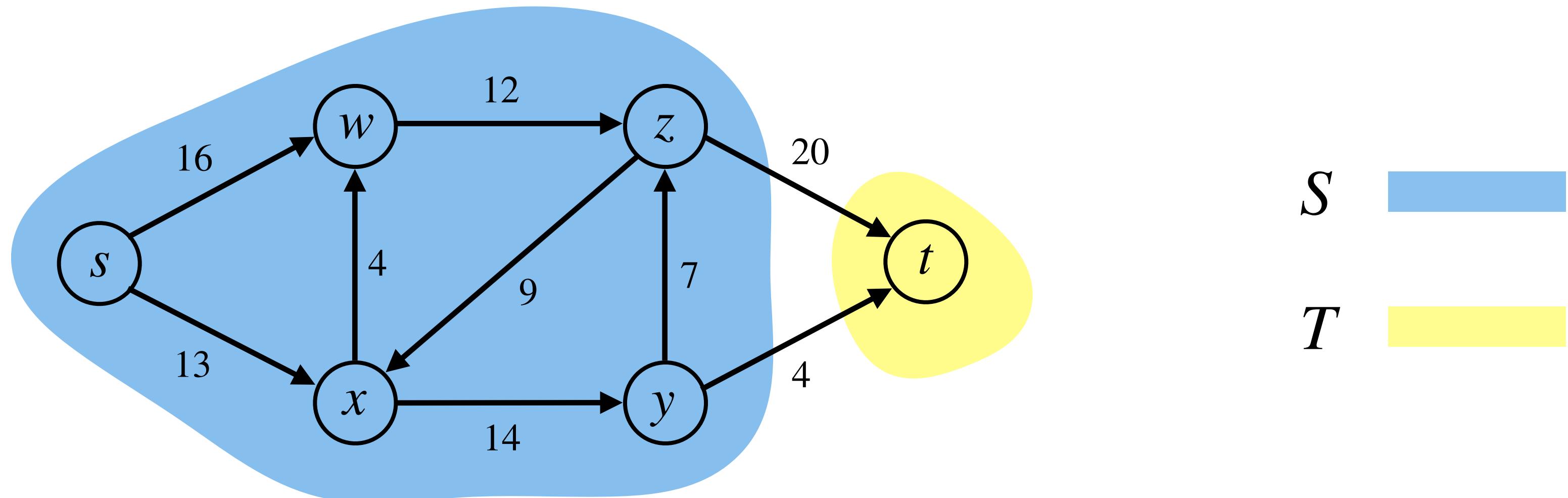
Examples:



Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

Examples:

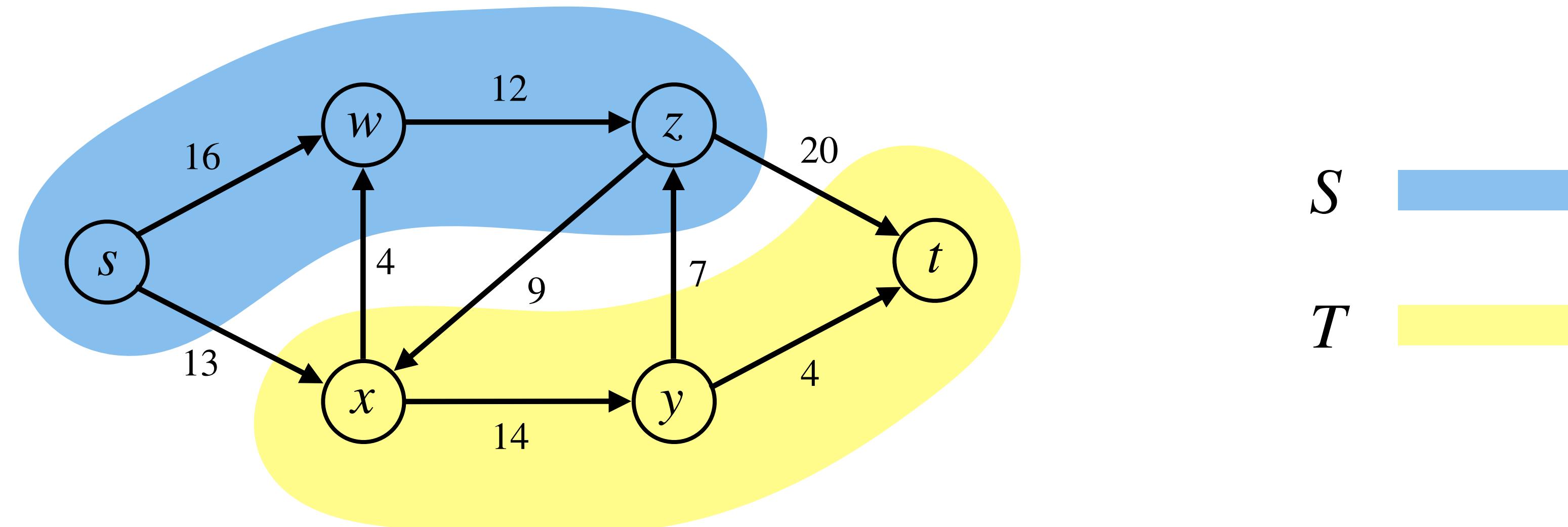


S
 T

Ford-Fulkerson Method: Correctness

Defn: A **cut** (S, T) of a flow network $G = (V, E)$ is a **partition** of V into S and $T = V - S$ so that $s \in S$ and $t \in T$.

Examples:



Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f ,

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

Ford-Fulkerson Method: Correctness

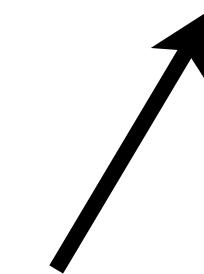
Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

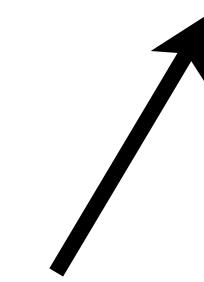


Total flow from S to T

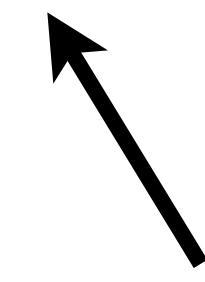
Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$



Total flow from S to T



Total flow from T to S

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

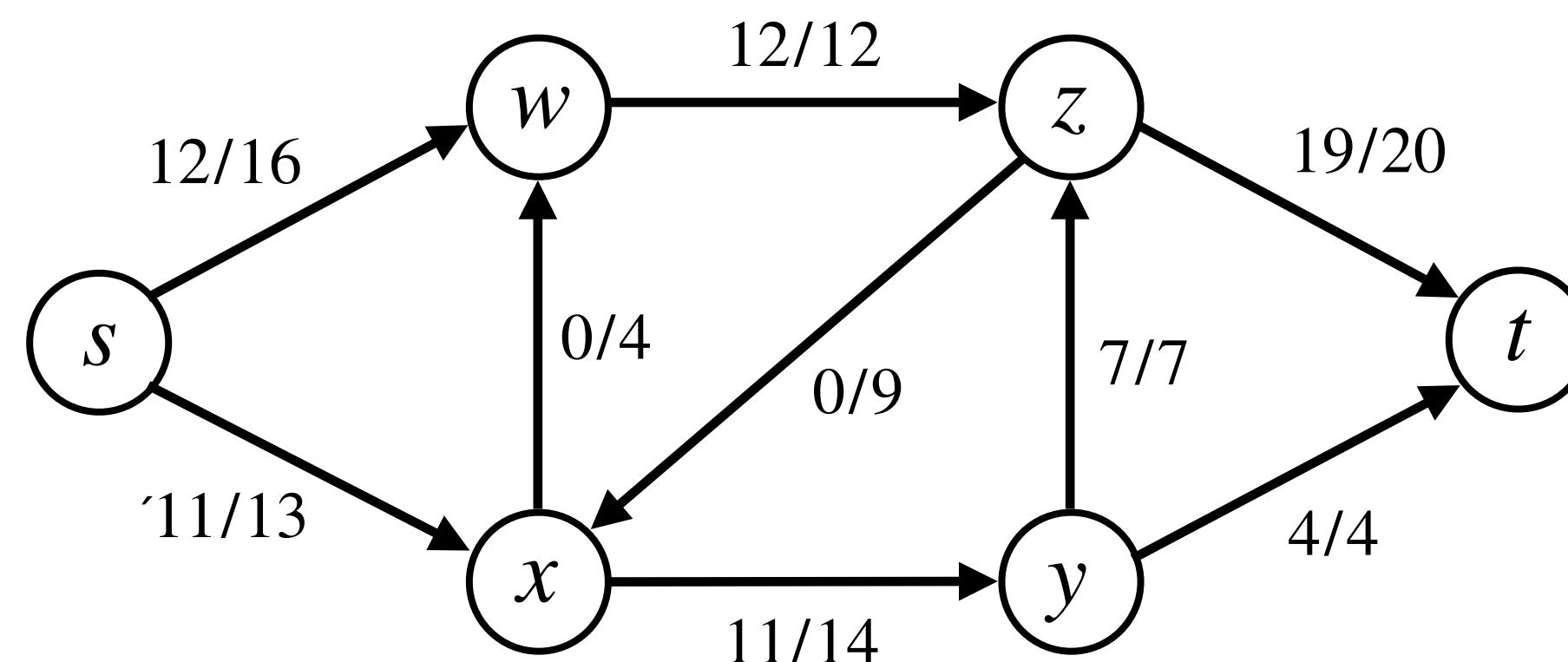
Examples:

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

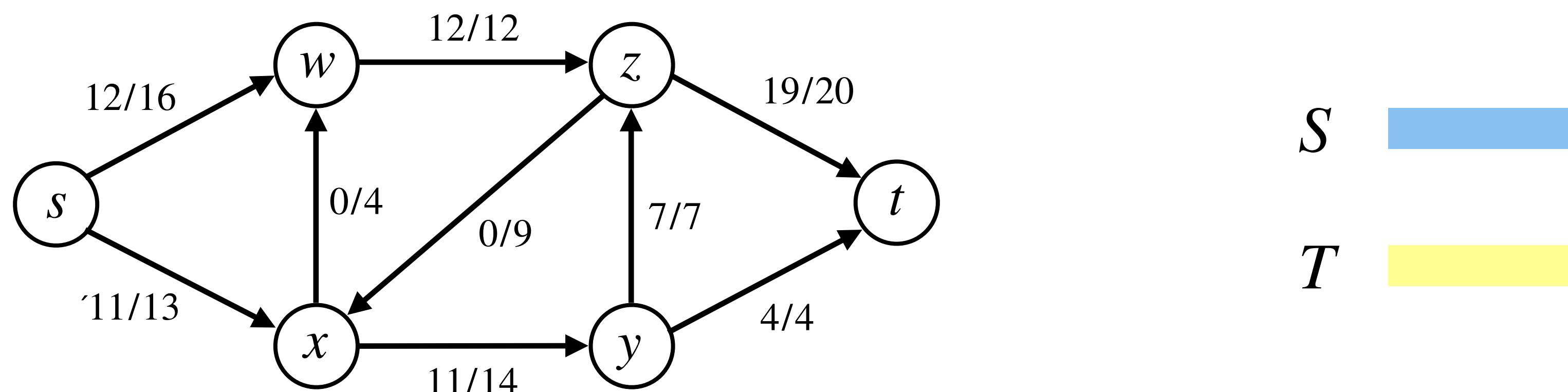


Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

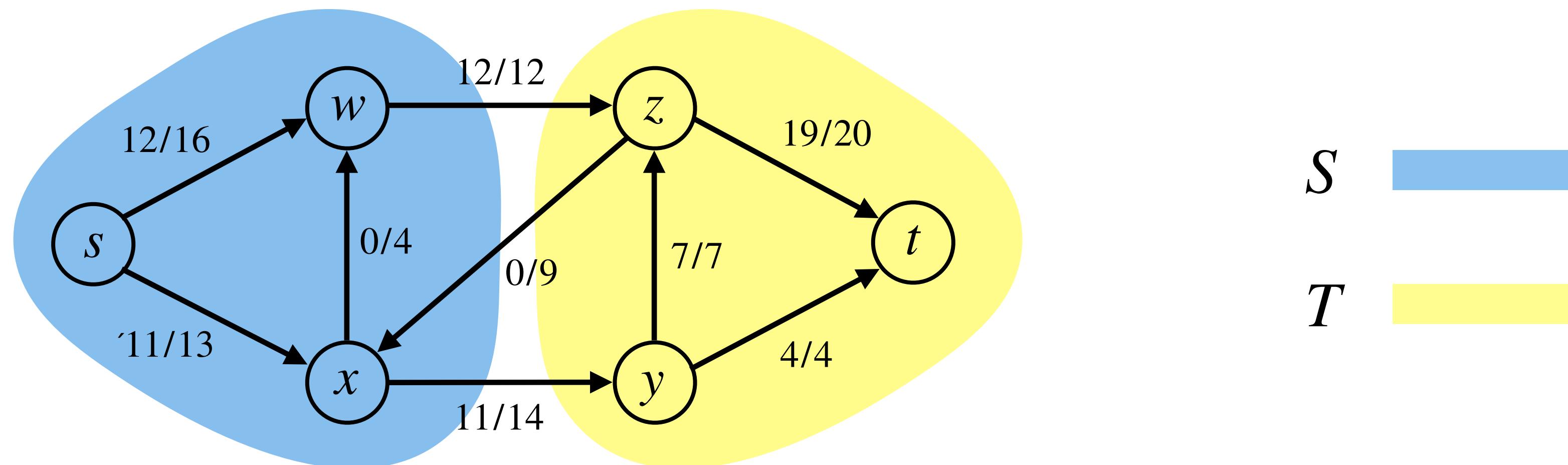


Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:



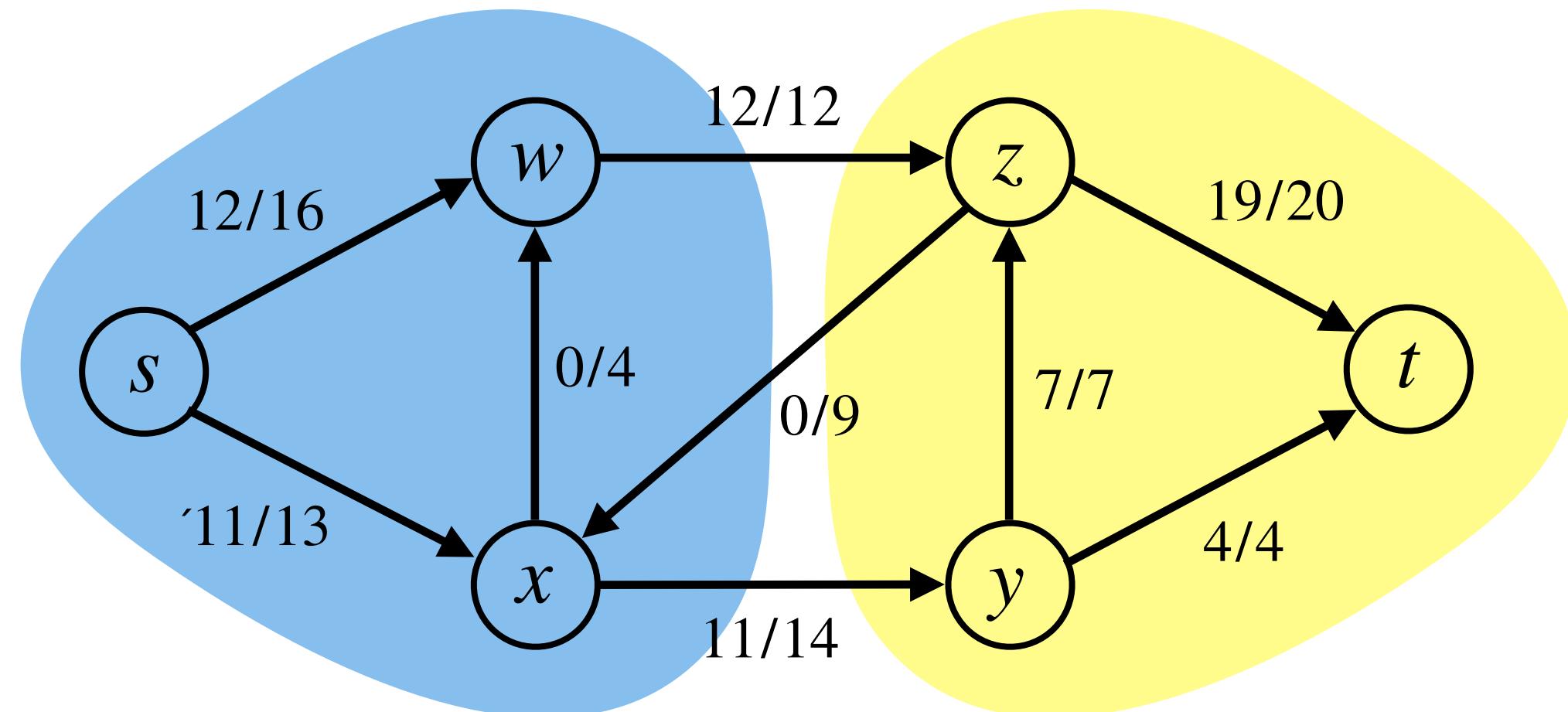
Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

$$f(S, T) = 23$$



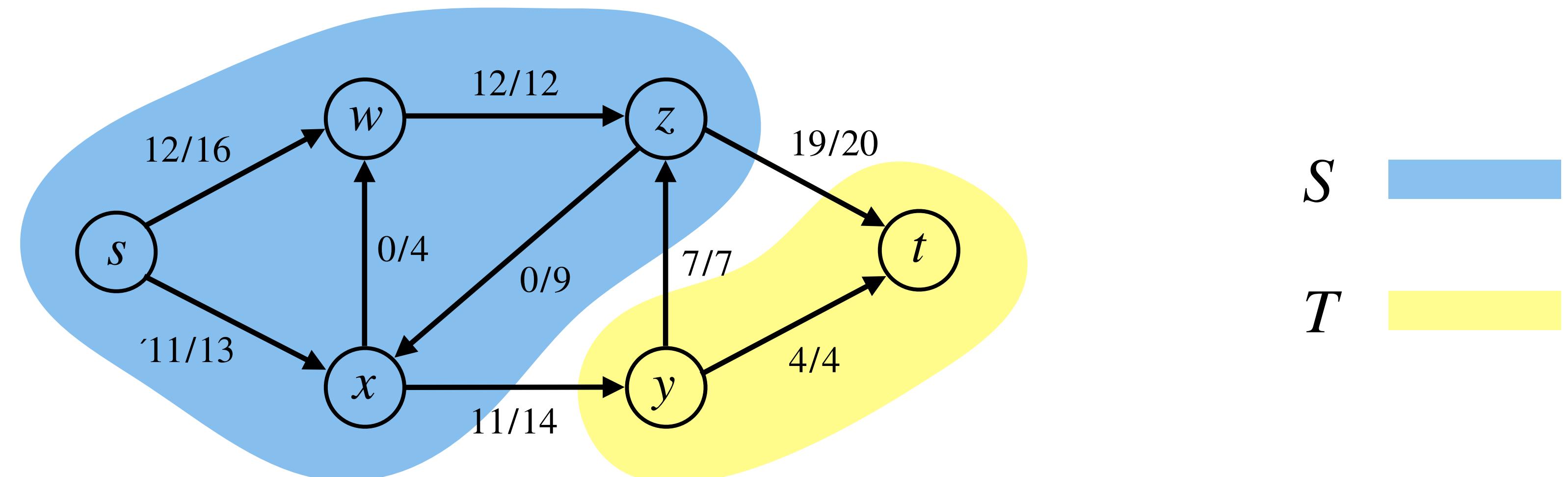
S
 T

Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:



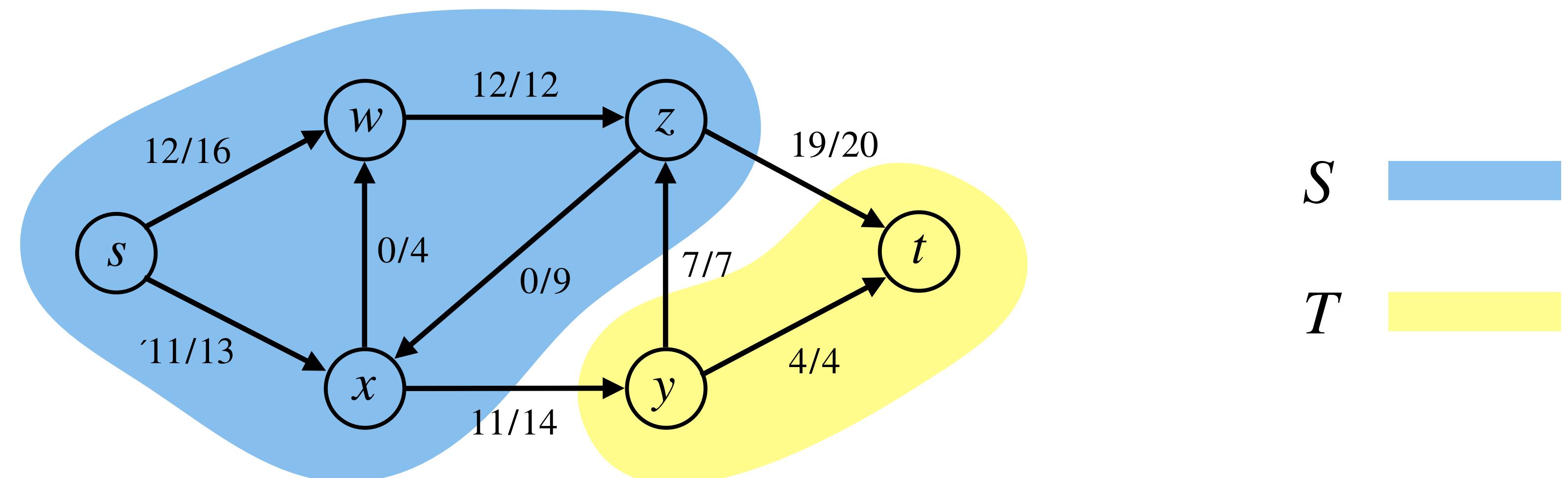
Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

$$f(S, T) = 23$$

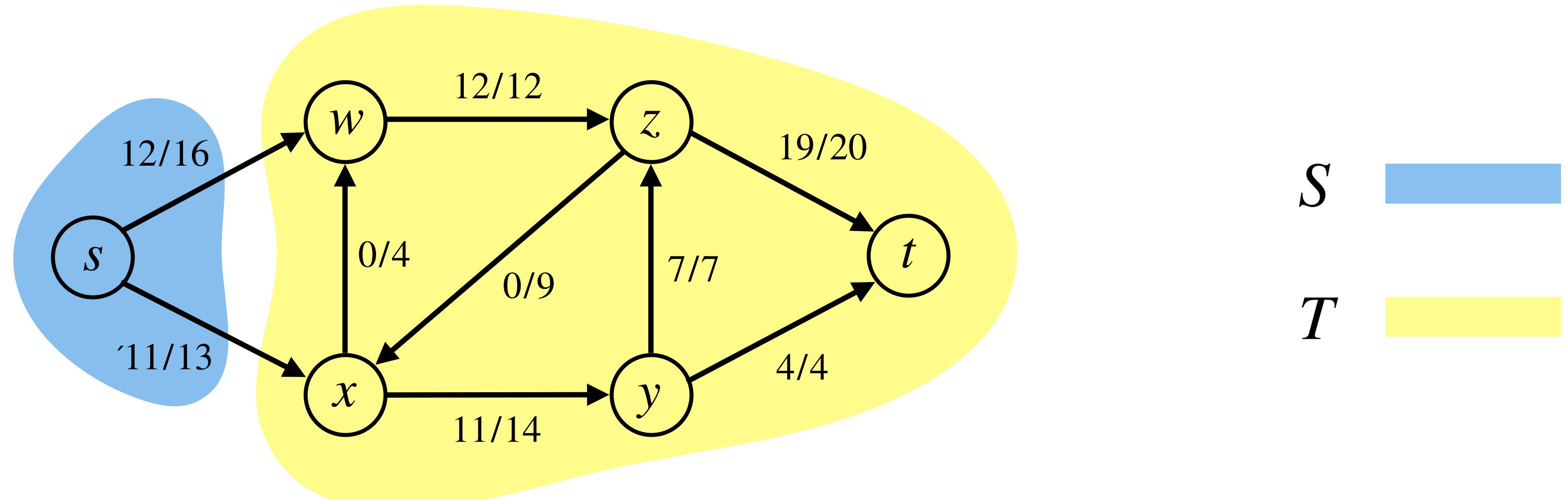


Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:



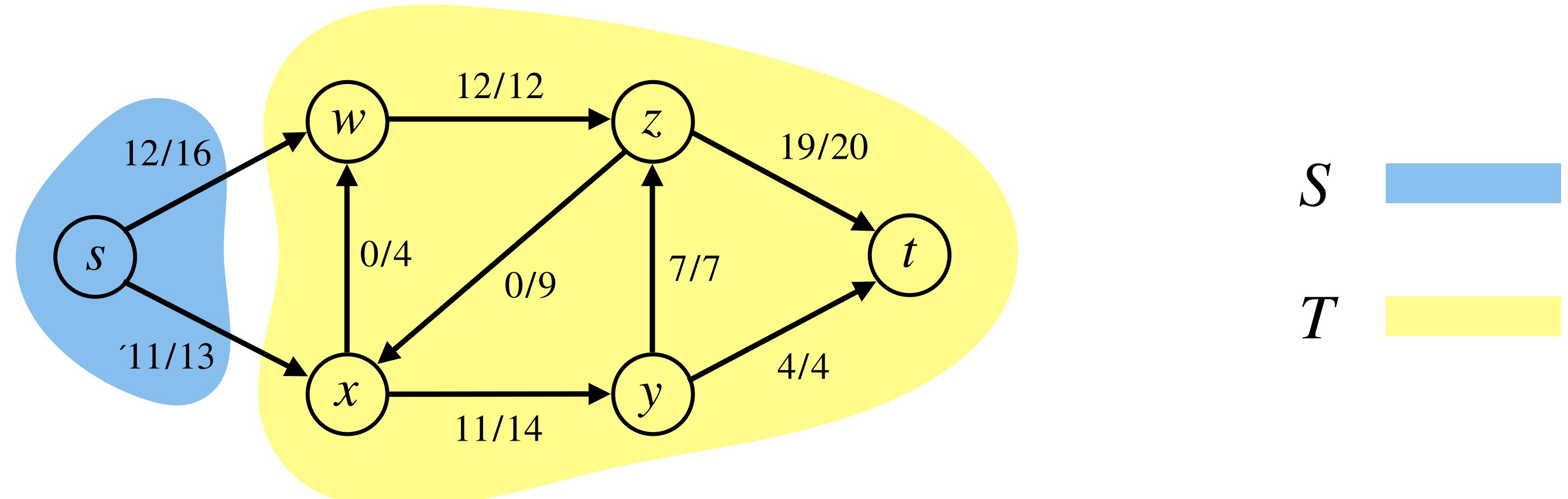
Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

$$f(S, T) = 23$$

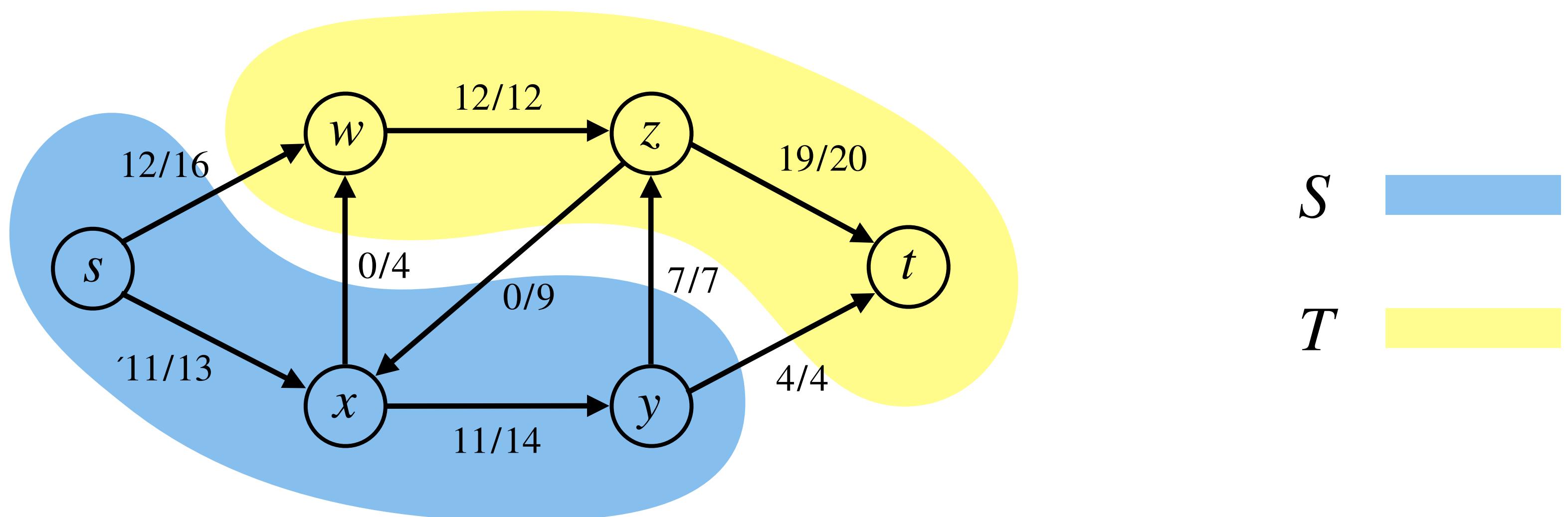


Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:



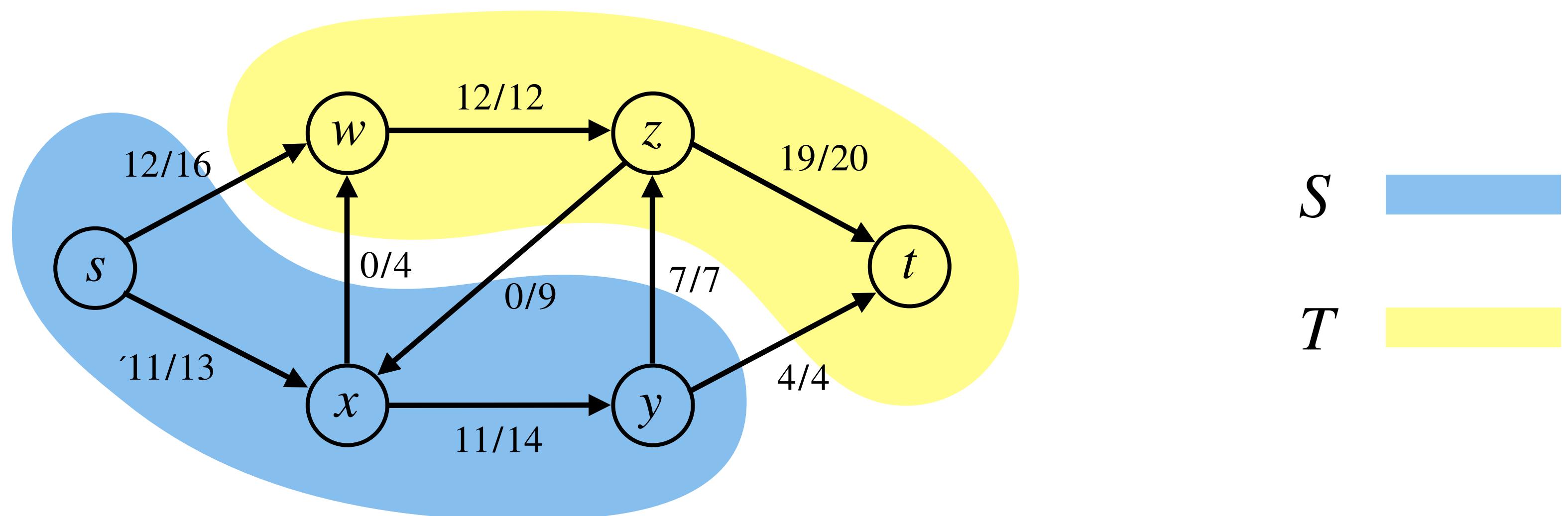
Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

$$f(S, T) = 23$$



Ford-Fulkerson Method: Correctness

Defn: In a flow network $G = (V, E)$ with flow f , the net flow $f(S, T)$ across the cut (S, T) is

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Examples:

$$f(S, T) = 23$$

