Lecture 18

Ford-Fulkerson Method (contd.), Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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Ford-Fulkerson(G, s, ?):

1. for each edge (u,v) € E(G)

2. flu,v) =0 Why f will be maximum
3. while there exists an s ~ ¢ path P in the residual network G, «—  Whenloop breaks?
4. o = Min(c{u,v) : (u,v) in P)

5. for each edge (u,v) in P

6. if (u,v) € E

7. fu,v) =f(u,v) + 0

8. else

9. fv,u) =f(v,u) — o

10. return f
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Theorem: If there is no augmenting path in the residual network G then fis a maximum tlow.

Proof: We need to study cuts and max-flow, min-cut theorem for the proot.
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Ford-Fulkerson(G, s, ?):
for each edge (u,v) € E(G) «—
flu,v) =0

— where f * is a max-flow,
while there exists an s ~ # path P in the residual network G, as flow may increase by one

O(1E])

Loop may run for | f * | time,

0 = Min(cf(u, V) : (u,v) in P) with every iteration
for each edge (1, v) in P
if (u,v) e £
f(u,v) =f(u,v) + 6

else

f(va I/l) =f(V, I/l) — 0

return f

Soe e g e e

e
S
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Ford-Fulkerson(G, s, ?):

1. for each edge (u,v) € E(G) ,
Loop may run for | f * | time,

2. f(u,v) =0 % _

«— where f * is a max-flow,

3. while there exists an s ~ f path P in the residual network G, as flow may increase by one

4. 0 = Min(cdu, v) : (u,v) in P) with every iteration

5. for each edge (u,v) in P

6. if (u,v) e £ -

va Au,v) = fu,v) + 6 O(|E|) because |E}| > |V]| -1

8. else

9. fv,u) = flv,u) — 6 Time Complexity: O(|E| - |f*])

10. return f
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Ford-Fulkerson(G, s, ): O(IE|)

1. for each edge (u,v) € E(G) «— ,
Loop may run for | f * | time,
2.  fu,v) =0 .
«— where f * is a max-flow,
3. while there exists an s ~ f path P in the residual network G, as flow may increase by one
4. 0 = Min(cdu, v) : (u,v) in P) with every iteration
5. for each edge (u,v) in P
6. if (u,v) e £ -
va Au,v) = fu,v) + 6 O(|E|) because |E}| > |V]| -1
8. else
9. fv,u) = flv,u) — 6 Time Complexity: O(|E| - |f*])

10. return f

Note: Analysis is valid when capacities are integer.
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Ford-Fulkerson may not terminate when some capacities are irrational.

A famous example is on the next slide.
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Ford-Fulkerson Method: A Non-terminating Case

let P = (5,X,y,2), Py = (5,2, ¥, x,w), P, = (s,Ww,y,2, 1), P; = (W, X, , 1) in residual networks.

Then we can perform the following 5 steps: (Verity it yourself.)

r = (\/g — 1)/2 is chosen so that 7 = 1 — r

We can repeat steps 2 — 5 with flows 2 r* and r* and keep doing so...
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Ford-Fulkerson Method: A Non-terminating Case

The total flow will converge to 1 + 22 r'=2+3r <5.
i=1

There is a flow with value 5 in the given network.

Hence, the algorithm will never terminate.

r = (\/g — 1)/2 is chosen so that 7 = 1 — r
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Ford-Fulkerson Method

Will Ford-Fulkerson terminate when capacities are rationals?

Yes, prove it yourself.
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Ford-Fulkerson Method: Correctness

Defn: In a flow network G = (V, E) with flow /, the net flow (S, T') across the cut (5, T') is

fS.TY= ) ) fa.v)= ) ) fv,u)

uesS vel uesS veTl

Examples:

S, T) = 23

\

Why the net flow is the same for every cut?



