
Lecture 18

Ford-Fulkerson Method (contd.), Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w x

Gf

a

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w x

Gf

a

A forward edge 

in the augmenting path

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w x

Gf

a
δ ≤ a

A forward edge 

in the augmenting path

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

δ ≤ a

A forward edge 

in the augmenting path

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

b/c
δ ≤ a

A forward edge 

in the augmenting path

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Satisfying Capacity Constraint:

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

b/c
δ ≤ a

A forward edge 

in the augmenting path

c − b = a

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

b + δ/c
δ ≤ a

A forward edge 

in the augmenting path

c − b = a
Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

b + δ/c
δ ≤ a

A forward edge 

in the augmenting path

c − b = a, b + δ ≤ c
Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w x

Gf

a

A backward edge 

in the augmenting path

Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w x

Gf

a
δ ≤ a

A backward edge 

in the augmenting path

Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

a
δ ≤ a

A backward edge 

in the augmenting path

Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

a − δ
δ ≤ a

A backward edge 

in the augmenting path

Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

G

w x

Gf

a
w x

a − δ
δ ≤ a

A backward edge 

in the augmenting path

a − δ ≥ 0
Satisfying Capacity Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf
A vertex in the


 augmenting path

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

Both edges are forward in G

w

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

Both edges are forward in G

w
δδ

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

First is forward, second is backward in G

w

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

First is forward, second is backward in G

w
−δδ

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

First is backward, second is forward in G

w

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

First is backward, second is forward in G

w
δ−δ

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

Both edges are backward in G

w

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks
• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

w

Gf

δ

A vertex in the

 augmenting path

Both edges are backward in G

w
−δ−δ

Satisfying Conservation Constraint:

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

Gf

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

Gf
First edge in the

augmenting path 

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

Can it be a backward edge?

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

No.Can it be a backward edge?

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

s x
a

G

No.Can it be a backward edge?

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

s x
a

G

No.Can it be a backward edge?

Note: Path  is called an augmenting path. P

An incoming edge 

to  is not possible s



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

s x

G

No.Can it be a backward edge?

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

s x
a + δ

G

No.Can it be a backward edge?

Note: Path  is called an augmenting path. P



Augmenting Flows via Residual Networks

Why flow value increases?

• Find    path  in the residual network  and its bottleneck capacity .s ↝ t P Gf δ

• For every :(u, v) ∈ P

• If   , add  flow to  in . (u, v) ∈ E(G) δ (u, v) f

• If , subtract  flow from  in .(v, u) ∈ E(G) δ (v, u) f

s x
a

δ > 0

Gf
First edge in the

augmenting path 

s x
a + δ

G

No.Can it be a backward edge?

Increased flow by δ

Note: Path  is called an augmenting path. P



Ford-Fulkerson Method



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E
 7.                f(u, v) = f(u, v) + δ



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E
 7.                f(u, v) = f(u, v) + δ
 8.            else



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E
 7.                f(u, v) = f(u, v) + δ
 8.            else
 9.                f(v, u) = f(v, u) − δ



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E
 7.                f(u, v) = f(u, v) + δ
 8.            else
 9.                f(v, u) = f(v, u) − δ
10.    return    f



Ford-Fulkerson Method

 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf

 4.        Min  in  δ = (cf(u, v) : (u, v) P)
 5.        for each edge  in  (u, v) P
 6.            if  (u, v) ∈ E
 7.                f(u, v) = f(u, v) + δ
 8.            else
 9.                f(v, u) = f(v, u) − δ
10.    return    f

Why  will be maximum 

when loop breaks? 

f



Ford-Fulkerson Method: Correctness



Ford-Fulkerson Method: Correctness

Theorem: If there is no augmenting path in the residual network , then  is a maximum flow.Gf f



Ford-Fulkerson Method: Correctness

Theorem: If there is no augmenting path in the residual network , then  is a maximum flow.Gf f
Proof: We need to study cuts and max-flow, min-cut theorem for the proof.



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f

O( |E | )



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f

O( |E | )
Loop may run for  time, 


where  is a max-flow, 

as flow may increase by one


 with every iteration

| f * |
f *



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f

O( |E | )
Loop may run for  time, 


where  is a max-flow, 

as flow may increase by one


 with every iteration

| f * |
f *

 because  O( |E | ) |E | ≥ |V | − 1



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f

O( |E | )
Loop may run for  time, 


where  is a max-flow, 

as flow may increase by one


 with every iteration

| f * |
f *

 because  O( |E | ) |E | ≥ |V | − 1

Time Complexity: O( |E | ⋅ | f * | )



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf

δ = (cf(u, v) : (u, v) P)
(u, v) P

(u, v) ∈ E
f(u, v) = f(u, v) + δ

f(v, u) = f(v, u) − δ
f

O( |E | )
Loop may run for  time, 


where  is a max-flow, 

as flow may increase by one


 with every iteration

| f * |
f *

 because  O( |E | ) |E | ≥ |V | − 1

Time Complexity: O( |E | ⋅ | f * | )

Note: Analysis is valid when capacities are integer.



Ford-Fulkerson Method: A Non-terminating Case



Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson may not terminate when some capacities are irrational.



Ford-Fulkerson Method: A Non-terminating Case

Ford-Fulkerson may not terminate when some capacities are irrational.

A famous example is on the next slide.



Ford-Fulkerson Method: A Non-terminating Case



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P 1

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P
P1

1

r

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P
P1

P2

1

r
r

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P
P1

P2

P1

1

r
r
r2

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P
P1

P2

P1

P3

1

r
r
r2

r2

Then we can perform the following  steps: (Verify it yourself.)5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

Let , , ,  in residual networks.P = ⟨s, x, y, z⟩ P1 = ⟨s, z, y, x, w⟩ P2 = ⟨s, w, y, z, t⟩ P3 = ⟨w, x, y, t⟩

Step Augmenting Path Sent Flow

1

2
3
4
5

P
P1

P2

P1

P3

1

r
r
r2

r2

Then we can perform the following  steps: (Verify it yourself.)5

We can repeat steps  with flows , , , and  and keep doing so…2 − 5 r3 r3 r4 r4



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞

∑
i=1

ri =



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞

∑
i=1

ri = 2 + 3r



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞

∑
i=1

ri = 2 + 3r  .< 5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞

∑
i=1

ri =

There is a flow with value  in the given network.5

2 + 3r  .< 5



Ford-Fulkerson Method: A Non-terminating Case

s

x y zw

t

2
2

2

2
2

2

1 r1

 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞

∑
i=1

ri =

There is a flow with value  in the given network.5

Hence, the algorithm will never terminate.

2 + 3r  .< 5



Ford-Fulkerson Method

Will Ford-Fulkerson terminate when capacities are rationals?



Ford-Fulkerson Method

Will Ford-Fulkerson terminate when capacities are rationals?

Yes, prove it yourself.



Ford-Fulkerson Method: Correctness



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E) is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)
 and .s ∈ S t ∈ T

is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)
 and .s ∈ S t ∈ T

Examples:

is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20
S

T

is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network (S, T) G = (V, E)
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20
S

T

is a partition of  into  and  so thatV S T = V − S



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network  is a partition of  into  and  so that(S, T) G = (V, E) V S T = V − S
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20
S

T



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network  is a partition of  into  and  so that(S, T) G = (V, E) V S T = V − S
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20
S

T



Ford-Fulkerson Method: Correctness

Defn: A cut  of a flow network  is a partition of  into  and  so that(S, T) G = (V, E) V S T = V − S
 and .s ∈ S t ∈ T

Examples:

w

x

z

y

ts

16

12

13

4
9

14
4

7

20
S

T



Ford-Fulkerson Method: Correctness



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow ,G = (V, E) f



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow ,G = (V, E) f  the net flow  across the cut  isf(S, T) (S, T)



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow ,G = (V, E) f

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

 the net flow  across the cut  isf(S, T) (S, T)



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow ,G = (V, E) f

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Total flow from  to S T

 the net flow  across the cut  isf(S, T) (S, T)



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow ,G = (V, E) f

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Total flow from  to S T Total flow from  to T S

 the net flow  across the cut  isf(S, T) (S, T)



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
f(S, T) = 23



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
f(S, T) = 23



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
f(S, T) = 23



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
f(S, T) = 23



Ford-Fulkerson Method: Correctness

Defn: In a flow network  with flow , the net flow  across the cut  isG = (V, E) f f(S, T) (S, T)

f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
f(S, T) = 23

Why the net flow is the same for every cut?


