
Lecture 18

Ford-Fulkerson Method (contd.), Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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 Ford-Fulkerson :           (G, s, t)
 1.    for each edge  (u, v) ∈ E(G)
 2.        f(u, v) = 0
 3.    while there exists an    path  in the residual network s ↝ t P Gf
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Why  will be maximum 

when loop breaks? 

f
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Ford-Fulkerson Method: Correctness

Theorem: If there is no augmenting path in the residual network , then  is a maximum flow.Gf f
Proof: We need to study cuts and max-flow, min-cut theorem for the proof.



Ford-Fulkerson Method: Analysis
 Ford-Fulkerson :           

 1.    for each edge  

 2.        

 3.    while there exists an    path  in the residual network 


 4.        Min  in  


 5.        for each edge  in  

 6.            if  

 7.                

 8.            else

 9.                

10.    return    

(G, s, t)
(u, v) ∈ E(G)

f(u, v) = 0
s ↝ t P Gf
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Time Complexity: O( |E | ⋅ | f * | )

Note: Analysis is valid when capacities are integer.
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Ford-Fulkerson may not terminate when some capacities are irrational.

A famous example is on the next slide.
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 is chosen so that r = ( 5 − 1)/2 r2 = 1 − r

The total flow will converge to 1 + 2
∞
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ri =

There is a flow with value  in the given network.5

Hence, the algorithm will never terminate.

2 + 3r  .< 5
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Will Ford-Fulkerson terminate when capacities are rationals?

Yes, prove it yourself.
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Why the net flow is the same for every cut?


